IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v111y2022ics0305048322000664.html
   My bibliography  Save this article

Network flow based approaches for the pipelines routing problem in naval design

Author

Listed:
  • Blanco, Víctor
  • González, Gabriel
  • Hinojosa, Yolanda
  • Ponce, Diego
  • Pozo, Miguel A.
  • Puerto, Justo

Abstract

In this paper we propose a general methodology for the optimal automatic routing of spatial pipelines motivated by a recent collaboration with Ghenova, a leading Naval Engineering company. We provide a minimum cost multicommodity network flow based model for the problem incorporating all the technical requirements for a feasible pipeline routing. A branch-and-cut approach is designed and different matheuristic algorithms are derived for solving efficiently the problem. We report the results of a battery of computational experiments to assess the problem performance as well as a case study of a real-world naval instance provided by our partner company.

Suggested Citation

  • Blanco, Víctor & González, Gabriel & Hinojosa, Yolanda & Ponce, Diego & Pozo, Miguel A. & Puerto, Justo, 2022. "Network flow based approaches for the pipelines routing problem in naval design," Omega, Elsevier, vol. 111(C).
  • Handle: RePEc:eee:jomega:v:111:y:2022:i:c:s0305048322000664
    DOI: 10.1016/j.omega.2022.102659
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048322000664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2022.102659?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mostafaei, Hossein & Castro, Pedro M. & Relvas, Susana & Harjunkoski, Iiro, 2021. "A holistic MILP model for scheduling and inventory management of a multiproduct oil distribution system," Omega, Elsevier, vol. 98(C).
    2. Arslan, Okan & Archetti, Claudia & Jabali, Ola & Laporte, Gilbert & Grazia Speranza, Maria, 2020. "Minimum cost network design in strategic alliances," Omega, Elsevier, vol. 96(C).
    3. Christopher Yeates & Cornelia Schmidt-Hattenberger & Wolfgang Weinzierl & David Bruhn, 2021. "Heuristic Methods for Minimum-Cost Pipeline Network Design – a Node Valency Transfer Metaheuristic," Networks and Spatial Economics, Springer, vol. 21(4), pages 839-871, December.
    4. Li, Xiangyong & Lin, Shaochong & Tian, Peng & Aneja, Y.P., 2017. "Models and column generation approach for the resource-constrained minimum cost path problem with relays," Omega, Elsevier, vol. 66(PA), pages 79-90.
    5. Garg, Manish & Smith, J. Cole, 2008. "Models and algorithms for the design of survivable multicommodity flow networks with general failure scenarios," Omega, Elsevier, vol. 36(6), pages 1057-1071, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amin, Gholam R. & Ibn Boamah, Mustapha, 2023. "Modeling business partnerships: A data envelopment analysis approach," European Journal of Operational Research, Elsevier, vol. 305(1), pages 329-337.
    2. Li, Xiangyong & Ding, Yi & Pan, Kai & Jiang, Dapei & Aneja, Y.P., 2020. "Single-path service network design problem with resource constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    3. Levitin, G. & Gertsbakh, I. & Shpungin, Y., 2013. "Evaluating the damage associated with intentional supply deprivation in multi-commodity network," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 11-17.
    4. Wheatley, David & Gzara, Fatma & Jewkes, Elizabeth, 2015. "Logic-based Benders decomposition for an inventory-location problem with service constraints," Omega, Elsevier, vol. 55(C), pages 10-23.
    5. Yücel, E. & Salman, F.S. & Arsik, I., 2018. "Improving post-disaster road network accessibility by strengthening links against failures," European Journal of Operational Research, Elsevier, vol. 269(2), pages 406-422.
    6. Losada, Chaya & Scaparra, M. Paola & O’Hanley, Jesse R., 2012. "Optimizing system resilience: A facility protection model with recovery time," European Journal of Operational Research, Elsevier, vol. 217(3), pages 519-530.
    7. Li, Zhengbing & Liang, Yongtu & Ni, Weilong & Liao, Qi & Xu, Ning & Li, Lichao & Zheng, Jianqin & Zhang, Haoran, 2022. "Pipesharing: economic-environmental benefits from transporting biofuels through multiproduct pipelines," Applied Energy, Elsevier, vol. 311(C).
    8. Ozgur Kabadurmus & Alice E. Smith, 2016. "Multi-commodity k-splittable survivable network design problems with relays," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(1), pages 123-133, May.
    9. Maryam Soleimani-Alyar & Alireza Ghaffari-Hadigheh & Fatemeh Sadeghi, 2016. "Controlling Floods by Optimization Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4053-4062, September.
    10. Rocco S., Claudio M. & Emmanuel Ramirez-Marquez, José & Salazar A., Daniel E., 2010. "Bi and tri-objective optimization in the deterministic network interdiction problem," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 887-896.
    11. Zhang, C. & Liu, X. & Jiang, YP. & Fan, B. & Song, X., 2016. "A two-stage resource allocation model for lifeline systems quick response with vulnerability analysis," European Journal of Operational Research, Elsevier, vol. 250(3), pages 855-864.
    12. Zhang, Yue & Feng, Qiang & Fan, Dongming & Ren, Yi & Sun, Bo & Yang, Dezhen & Wang, Zili, 2023. "Optimization of maritime support network with relays under uncertainty: A novel matheuristics method," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    13. Siqian Shen & Mingdi You & Yintai Ma, 2017. "Single‐commodity stochastic network design under demand and topological uncertainties with insufficient data," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(2), pages 154-173, March.
    14. Pengfei Zhang & Neng Fan, 2017. "Analysis of budget for interdiction on multicommodity network flows," Journal of Global Optimization, Springer, vol. 67(3), pages 495-525, March.
    15. Weiwei Li & Lisheng Weng & Kaixu Zhao & Sidong Zhao & Ping Zhang, 2021. "Research on the Evaluation of Real Estate Inventory Management in China," Land, MDPI, vol. 10(12), pages 1-29, November.
    16. Mohammad Ghorbani & Michele Acciaro & Sandra Transchel & Pierre Cariou, 2022. "Strategic alliances in container shipping: A review of the literature and future research agenda," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 439-465, June.
    17. Fateme Fotuhi & Nathan Huynh, 2017. "Reliable Intermodal Freight Network Expansion with Demand Uncertainties and Network Disruptions," Networks and Spatial Economics, Springer, vol. 17(2), pages 405-433, June.
    18. Liberatore, Federico & Scaparra, Maria P. & Daskin, Mark S., 2012. "Hedging against disruptions with ripple effects in location analysis," Omega, Elsevier, vol. 40(1), pages 21-30, January.
    19. Majbah Uddin & Nathan Huynh, 2019. "Reliable Routing of Road-Rail Intermodal Freight under Uncertainty," Networks and Spatial Economics, Springer, vol. 19(3), pages 929-952, September.
    20. Song, Zhuzhu & Tang, Wansheng & Zhao, Ruiqing, 2021. "Liner alliances with heterogeneous price level and service competition: Partial vs. full," Omega, Elsevier, vol. 103(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:111:y:2022:i:c:s0305048322000664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.