IDEAS home Printed from
   My bibliography  Save this article

Asymptotic results in segmented multiple regression


  • Kim, Jeankyung
  • Kim, Hyune-Ju


This paper studies the asymptotic behavior of the least squares estimators in segmented multiple regression. For a model with more than one partitioning variable, each of which has one or more change-points, we study the asymptotic properties of the estimated change-points and regression coefficients. Using techniques in empirical process theory, we prove the consistency of the least squares estimators and also establish the asymptotic normality of the estimated regression coefficients. For the estimated change-points, we obtain their consistency at the rates of or 1/n, with or without continuity constraints, respectively. The change-points estimated under the continuity constraints are also shown to asymptotically have a multivariate normal distribution. For the case where the regression mean functions are not assumed to be continuous at the change-points, the asymptotic distribution of the estimated change-points involves a step function process, whose distribution does not follow a well-known distribution.

Suggested Citation

  • Kim, Jeankyung & Kim, Hyune-Ju, 2008. "Asymptotic results in segmented multiple regression," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 2016-2038, October.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:9:p:2016-2038

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    2. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    3. Yu, Binbing & Barrett, Michael J. & Kim, Hyune-Ju & Feuer, Eric J., 2007. "Estimating joinpoints in continuous time scale for multiple change-point models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2420-2427, February.
    4. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Beran, Jan & Weiershäuser, Arno, 2011. "On spline regression under Gaussian subordination with long memory," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 315-335, February.
    2. Gabriela Ciuperca, 2014. "Model selection by LASSO methods in a change-point model," Statistical Papers, Springer, vol. 55(2), pages 349-374, May.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:9:p:2016-2038. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.