IDEAS home Printed from
   My bibliography  Save this article

Bootstrap approximation of tail dependence function


  • Peng, Liang
  • Qi, Yongcheng


For estimating a rare event via the multivariate extreme value theory, the so-called tail dependence function has to be investigated (see [L. de Haan, J. de Ronde, Sea and wind: Multivariate extremes at work, Extremes 1 (1998) 7-45]). A simple, but effective estimator for the tail dependence function is the tail empirical distribution function, see [X. Huang, Statistics of Bivariate Extreme Values, Ph.D. Thesis, Tinbergen Institute Research Series, 1992] or [R. Schmidt, U. Stadtmüller, Nonparametric estimation of tail dependence, Scand. J. Stat. 33 (2006) 307-335]. In this paper, we first derive a bootstrap approximation for a tail dependence function with an approximation rate via the construction approach developed by [K. Chen, S.H. Lo, On a mapping approach to investigating the bootstrap accuracy, Probab. Theory Relat. Fields 107 (1997) 197-217], and then apply it to construct a confidence band for the tail dependence function. A simulation study is conducted to assess the accuracy of the bootstrap approach.

Suggested Citation

  • Peng, Liang & Qi, Yongcheng, 2008. "Bootstrap approximation of tail dependence function," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1807-1824, September.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:8:p:1807-1824

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    2. Geluk, J.L. & de Haan, L.F.M., 2002. "On bootstrap sample size in extreme value theory," Econometric Institute Research Papers EI 2002-40, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
    4. Drees, Holger & Huang, Xin, 1998. "Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 25-47, January.
    5. Einmahl, J. H. J. & Ruymgaart, F. H., 1987. "The almost sure behavior of the oscillation modulus of the multivariate empirical process," Statistics & Probability Letters, Elsevier, vol. 6(2), pages 87-96, November.
    6. EL-NOUTY Charles & GUILLOU Armelle, 2000. "On The Bootstrap Accuracy Of The Pareto Index," Statistics & Risk Modeling, De Gruyter, vol. 18(3), pages 275-290, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Liang Peng & Yongcheng Qi, 2010. "Smoothed jackknife empirical likelihood method for tail copulas," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 514-536, November.
    2. Asimit, Alexandru V. & Gerrard, Russell & Hou, Yanxi & Peng, Liang, 2016. "Tail dependence measure for examining financial extreme co-movements," Journal of Econometrics, Elsevier, vol. 194(2), pages 330-348.
    3. Bücher Axel, 2014. "A note on nonparametric estimation of bivariate tail dependence," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 1-12, June.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:8:p:1807-1824. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.