IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v84y2003i1p190-207.html
   My bibliography  Save this article

Efficient estimators and LAN in canonical bivariate POT models

Author

Listed:
  • Falk, Michael
  • Reiss, Rolf-Dieter

Abstract

Bivariate generalized Pareto distributions (GPs) with uniform margins are introduced and elementary properties such as peaks-over-threshold (POT) stability are discussed. A unified parameterization with parameter [theta][set membership, variant][0,1] of the GPs is provided by their canonical parameterization. We derive efficient estimators of [theta] and of the dependence function of the GP in various models and establish local asymptotic normality (LAN) of the loglikelihood function of a 2x2 table sorting of the observations. From this result we can deduce that the estimator of [theta] suggested by Falk and Reiss (2001, Statist. Probab. Lett. 52, 233-242) is not efficient, whereas a modification actually is.

Suggested Citation

  • Falk, Michael & Reiss, Rolf-Dieter, 2003. "Efficient estimators and LAN in canonical bivariate POT models," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 190-207, January.
  • Handle: RePEc:eee:jmvana:v:84:y:2003:i:1:p:190-207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(02)00010-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. Kaufmann & R. Reiss, 1993. "Strong convergence of multivariate point processes of exceedances," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(3), pages 433-444, September.
    2. Drees, Holger & Huang, Xin, 1998. "Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 25-47, January.
    3. Falk, Michael & Reiss, Rolf-Dieter, 2001. "Estimation of canonical dependence parameters in a class of bivariate peaks-over-threshold models," Statistics & Probability Letters, Elsevier, vol. 52(3), pages 233-242, April.
    4. Lu, Jye-Chyi & Bhattacharyya, Gouri K., 1991. "Inference procedures for bivariate exponential model of Gumbel," Statistics & Probability Letters, Elsevier, vol. 12(1), pages 37-50, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Falk, Michael & Reiss, Rolf-Dieter, 2005. "On Pickands coordinates in arbitrary dimensions," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 426-453, February.
    2. Falk, Michael & Reiss, Rolf-Dieter, 2005. "On the distribution of Pickands coordinates in bivariate EV and GP models," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 267-295, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:84:y:2003:i:1:p:190-207. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.