IDEAS home Printed from
   My bibliography  Save this article

Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function


  • Drees, Holger
  • Huang, Xin


It is well known that a bivariate distribution belongs to the domain of attraction of an extreme value distribution G if and only if the marginals belong to the domain of attraction of the univariate marginal extreme value distributions and the dependence function converges to the stable tail dependence function of G. Hall and Welsh (1984,Ann. Statist.12, 1079-1084) and Drees (1997b,Ann. Statist., to appear) addressed the problem of finding optimal rates of convergence for estimators of the extreme value index of an univariate distribution. The present paper deals with the corresponding problem for the stable tail dependence function. First an upper bound on the rate of convergence for estimators of the stable tail dependence function is established. Then it is shown that this bound is sharp by proving that it is attained by the tail empirical dependence function. Finally, we determine the limit distribution of this estimator if the dependence function satisfies a certain second-order condition.

Suggested Citation

  • Drees, Holger & Huang, Xin, 1998. "Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 25-47, January.
  • Handle: RePEc:eee:jmvana:v:64:y:1998:i:1:p:25-47

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Einmahl, J. H. J. & Dehaan, L. & Huang, X., 1993. "Estimating a Multidimensional Extreme-Value Distribution," Journal of Multivariate Analysis, Elsevier, vol. 47(1), pages 35-47, October.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:64:y:1998:i:1:p:25-47. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.