IDEAS home Printed from
   My bibliography  Save this article

Finite sample tail behavior of multivariate location estimators


  • Zuo, Yijun


A finite sample performance measure of multivariate location estimators is introduced based on "tail behavior". The tail performance of multivariate "monotone" location estimators and the halfspace depth based "non-monotone" location estimators including the Tukey halfspace median and multivariate L-estimators is investigated. The connections among the finite sample performance measure, the finite sample breakdown point, and the halfspace depth are revealed. It turns out that estimators with high breakdown point or halfspace depth have "appealing" tail performance. The tail performance of the halfspace median is very appealing and also robust against underlying population distributions, while the tail performance of the sample mean is very sensitive to underlying population distributions. These findings provide new insights into the notions of the halfspace depth and breakdown point and identify the important role of tail behavior as a quantitative measure of robustness in the multivariate location setting.

Suggested Citation

  • Zuo, Yijun, 2003. "Finite sample tail behavior of multivariate location estimators," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 91-105, April.
  • Handle: RePEc:eee:jmvana:v:85:y:2003:i:1:p:91-105

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Zuo, Yijun & Serfling, Robert, 2000. "Nonparametric Notions of Multivariate "Scatter Measure" and "More Scattered" Based on Statistical Depth Functions," Journal of Multivariate Analysis, Elsevier, vol. 75(1), pages 62-78, October.
    2. Jozef Kušnier & Ivan Mizera, 2001. "Tail Behavior and Breakdown Properties of Equivariant Estimators of Location," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(2), pages 244-261, June.
    3. Jurecková, Jana, 2000. "Test of tails based on extreme regression quantiles," Statistics & Probability Letters, Elsevier, vol. 49(1), pages 53-61, August.
    4. He, Xuming, et al, 1990. "Tail Behavior of Regression Estimators and Their Breakdown Points," Econometrica, Econometric Society, vol. 58(5), pages 1195-1214, September.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:85:y:2003:i:1:p:91-105. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.