IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i6p1757-1770.html

The least trimmed quantile regression

Author

Listed:
  • Neykov, N.M.
  • Čížek, P.
  • Filzmoser, P.
  • Neytchev, P.N.

Abstract

The linear quantile regression estimator is very popular and widely used. It is also well known that this estimator can be very sensitive to outliers in the explanatory variables. In order to overcome this disadvantage, the usage of the least trimmed quantile regression estimator is proposed to estimate the unknown parameters in a robust way. As a prominent measure of robustness, the breakdown point of this estimator is characterized and its consistency is proved. The performance of this approach in comparison with the classical one is illustrated by an example and simulation studies.

Suggested Citation

  • Neykov, N.M. & Čížek, P. & Filzmoser, P. & Neytchev, P.N., 2012. "The least trimmed quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1757-1770.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1757-1770
    DOI: 10.1016/j.csda.2011.10.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731100394X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.10.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jurecková, Jana, 2010. "Finite-sample distribution of regression quantiles," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1940-1946, December.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. Vandev, D., 1993. "A note on the breakdown point of the least median of squares and least trimmed squares estimators," Statistics & Probability Letters, Elsevier, vol. 16(2), pages 117-119, January.
    4. Neykov, N.M. & Filzmoser, P. & Neytchev, P.N., 2012. "Robust joint modeling of mean and dispersion through trimming," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 34-48, January.
    5. Cízek, Pavel, 2011. "Semiparametrically weighted robust estimation of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 774-788, January.
    6. Tableman, Mara, 1994. "The influence functions for the least trimmed squares and the least trimmed absolute deviations estimators," Statistics & Probability Letters, Elsevier, vol. 19(4), pages 329-337, March.
    7. Tableman, Mara, 1994. "The asymptotics of the least trimmed absolute deviations (LTAD) estimator," Statistics & Probability Letters, Elsevier, vol. 19(5), pages 387-398, April.
    8. Giloni, Avi & Simonoff, Jeffrey S. & Sengupta, Bhaskar, 2006. "Robust weighted LAD regression," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3124-3140, July.
    9. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, January.
    10. Čížek, Pavel, 2008. "General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
    11. Van Aelst, Stefan & Rousseeuw, Peter J. & Hubert, Mia & Struyf, Anja, 2002. "The Deepest Regression Method," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 138-166, April.
    12. Hawkins, Douglas M. & Olive, David, 1999. "Applications and algorithms for least trimmed sum of absolute deviations regression," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 119-134, December.
    13. He, Xuming, et al, 1990. "Tail Behavior of Regression Estimators and Their Breakdown Points," Econometrica, Econometric Society, vol. 58(5), pages 1195-1214, September.
    14. Hubert, Mia & Rousseeuw, Peter J., 1998. "The Catline for Deep Regression," Journal of Multivariate Analysis, Elsevier, vol. 66(2), pages 270-296, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mafusalov, Alexander & Uryasev, Stan, 2016. "CVaR (superquantile) norm: Stochastic case," European Journal of Operational Research, Elsevier, vol. 249(1), pages 200-208.
    2. N. Neykov & P. Filzmoser & P. Neytchev, 2014. "Erratum to: Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator," Statistical Papers, Springer, vol. 55(3), pages 917-918, August.
    3. G. Zioutas & C. Chatzinakos & T. D. Nguyen & L. Pitsoulis, 2017. "Optimization techniques for multivariate least trimmed absolute deviation estimation," Journal of Combinatorial Optimization, Springer, vol. 34(3), pages 781-797, October.
    4. Umberto Nizza, 2023. "The expertise effect: the impact of legal specialists’ intervention on the timely delivery of laymen's judgments," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 40(2), pages 589-614, July.
    5. Yu-Yen Ku & Tze-Yu Yen, 2016. "Heterogeneous Effect of Financial Leverage on Corporate Performance: A Quantile Regression Analysis of Taiwanese Companies," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-33, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debruyne, M. & Hubert, M. & Portnoy, S. & Vanden Branden, K., 2008. "Censored depth quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1604-1614, January.
    2. Vijverberg, Wim P. & Hasebe, Takuya, 2015. "GTL Regression: A Linear Model with Skewed and Thick-Tailed Disturbances," IZA Discussion Papers 8898, Institute of Labor Economics (IZA).
    3. Hawkins, Douglas M. & Olive, David, 1999. "Applications and algorithms for least trimmed sum of absolute deviations regression," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 119-134, December.
    4. Pitselis, Georgios, 2017. "Risk measures in a quantile regression credibility framework with Fama/French data applications," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 122-134.
    5. Jurecková, Jana, 2010. "Finite-sample distribution of regression quantiles," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1940-1946, December.
    6. Cheng, Tsung-Chi, 2011. "Robust diagnostics for the heteroscedastic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1845-1866, April.
    7. Olive, David J. & Hawkins, Douglas M., 2003. "Robust regression with high coverage," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 259-266, July.
    8. C. Chatzinakos & L. Pitsoulis & G. Zioutas, 2016. "Optimization techniques for robust multivariate location and scatter estimation," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1443-1460, May.
    9. Gaglianone, Wagner Piazza & Guillén, Osmani Teixeira de Carvalho & Figueiredo, Francisco Marcos Rodrigues, 2018. "Estimating inflation persistence by quantile autoregression with quantile-specific unit roots," Economic Modelling, Elsevier, vol. 73(C), pages 407-430.
    10. Ho, Hwai-Chung, 2015. "Sample quantile analysis for long-memory stochastic volatility models," Journal of Econometrics, Elsevier, vol. 189(2), pages 360-370.
    11. Yebin Cheng & Jan G. De Gooijer & Dawit Zerom, 2011. "Efficient Estimation of an Additive Quantile Regression Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 46-62, March.
    12. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    13. Abeliansky, Ana & Krenz, Astrid, 2015. "Democracy and international trade: Differential effects from a panel quantile regression framework," University of Göttingen Working Papers in Economics 243, University of Goettingen, Department of Economics.
    14. Das, Priyam & Ghosal, Subhashis, 2018. "Bayesian non-parametric simultaneous quantile regression for complete and grid data," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 172-186.
    15. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    16. repec:hum:wpaper:sfb649dp2015-031 is not listed on IDEAS
    17. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    18. Joachim Wagner, 2014. "Exports, foreign direct investments and productivity: are services firms different?," The Service Industries Journal, Taylor & Francis Journals, vol. 34(1), pages 24-37, January.
    19. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    20. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    21. Jurečková, Jana & Picek, Jan, 2012. "Regression quantiles and their two-step modifications," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1111-1115.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1757-1770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.