IDEAS home Printed from
   My bibliography  Save this article

The Catline for Deep Regression


  • Hubert, Mia
  • Rousseeuw, Peter J.


Motivated by the notion of regression depth (Rousseeuw and Hubert, 1996) we introduce thecatline, a new method for simple linear regression. At any bivariate data setZn={(xi, yi);i=1, ..., n} its regression depth is at leastn/3. This lower bound is attained for data lying on a convex or concave curve, whereas for perfectly linear data the catline attains a depth ofn. We construct anO(n log n) algorithm for the catline, so it can be computed fast in practice. The catline is Fisher-consistent at any linear modely=[beta]x+[alpha]+ein which the error distribution satisfies med(e  x)=0, which encompasses skewed and/or heteroscedastic errors. The breakdown value of the catline is 1/3, and its influence function is bounded. At the bivariate gaussian distribution its asymptotic relative efficiency compared to theL1line is 79.3% for the slope, and 88.9% for the intercept. The finite-sample relative efficiencies are in close agreement with these values. This combination of properties makes the catline an attractive fitting method.

Suggested Citation

  • Hubert, Mia & Rousseeuw, Peter J., 1998. "The Catline for Deep Regression," Journal of Multivariate Analysis, Elsevier, vol. 66(2), pages 270-296, August.
  • Handle: RePEc:eee:jmvana:v:66:y:1998:i:2:p:270-296

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Neykov, N.M. & Čížek, P. & Filzmoser, P. & Neytchev, P.N., 2012. "The least trimmed quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1757-1770.
    2. Wellmann, R. & Katina, S. & Muller, Ch.H., 2007. "Calculation of simplicial depth estimators for polynomial regression with applications," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5025-5040, June.
    3. Müller, Christine H., 2005. "Depth estimators and tests based on the likelihood principle with application to regression," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 153-181, July.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:66:y:1998:i:2:p:270-296. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.