IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Modeling Probabilistic Networks of Discrete and Continuous Variables

Listed author(s):
  • Castillo, Enrique
  • Gutiérrez, José Manuel
  • Hadi, Ali S.
Registered author(s):

    In this paper we show how discrete and continuous variables can be combined using parametric conditional families of distributions and how the likelihood weighting method can be used for propagating uncertainty through the network in an efficient manner. To illustrate the method we use, as an example, the damage assessment of reinforced concrete structures of buildings and we formalize the steps to be followed when modeling probabilistic networks. We start with one set of conditional probabilities. Then, we examine this set for uniqueness, consistency, and parsimony. We also show that cycles can be removed because they lead to redundant probability information. This redundancy may cause inconsistency, hence the probabilities must be checked for consistency. This examination may require a reduction to an equivalent set instandard canonicalform from which one can always construct a Bayesian network, which is the most convenient model. We also perform a sensitivity analysis, which shows that the model is robust.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 64 (1998)
    Issue (Month): 1 (January)
    Pages: 48-65

    in new window

    Handle: RePEc:eee:jmvana:v:64:y:1998:i:1:p:48-65
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Ross D. Shachter & C. Robert Kenley, 1989. "Gaussian Influence Diagrams," Management Science, INFORMS, vol. 35(5), pages 527-550, May.
    2. Arnold, Barry C. & Castillo, Enrique & Sarabia, José María, 1996. "Specification of distributions by combinations of marginal and conditional distributions," Statistics & Probability Letters, Elsevier, vol. 26(2), pages 153-157, February.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:64:y:1998:i:1:p:48-65. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.