IDEAS home Printed from
   My bibliography  Save this article

Modeling Probabilistic Networks of Discrete and Continuous Variables


  • Castillo, Enrique
  • Gutiérrez, José Manuel
  • Hadi, Ali S.


In this paper we show how discrete and continuous variables can be combined using parametric conditional families of distributions and how the likelihood weighting method can be used for propagating uncertainty through the network in an efficient manner. To illustrate the method we use, as an example, the damage assessment of reinforced concrete structures of buildings and we formalize the steps to be followed when modeling probabilistic networks. We start with one set of conditional probabilities. Then, we examine this set for uniqueness, consistency, and parsimony. We also show that cycles can be removed because they lead to redundant probability information. This redundancy may cause inconsistency, hence the probabilities must be checked for consistency. This examination may require a reduction to an equivalent set instandard canonicalform from which one can always construct a Bayesian network, which is the most convenient model. We also perform a sensitivity analysis, which shows that the model is robust.

Suggested Citation

  • Castillo, Enrique & Gutiérrez, José Manuel & Hadi, Ali S., 1998. "Modeling Probabilistic Networks of Discrete and Continuous Variables," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 48-65, January.
  • Handle: RePEc:eee:jmvana:v:64:y:1998:i:1:p:48-65

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Ross D. Shachter & C. Robert Kenley, 1989. "Gaussian Influence Diagrams," Management Science, INFORMS, vol. 35(5), pages 527-550, May.
    2. Arnold, Barry C. & Castillo, Enrique & Sarabia, José María, 1996. "Specification of distributions by combinations of marginal and conditional distributions," Statistics & Probability Letters, Elsevier, vol. 26(2), pages 153-157, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:ecomod:v:230:y:2012:i:c:p:50-62 is not listed on IDEAS
    2. Paul J. Sticha & Elise T. Axelrad, 2016. "Using dynamic models to support inferences of insider threat risk," Computational and Mathematical Organization Theory, Springer, vol. 22(3), pages 350-381, September.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:64:y:1998:i:1:p:48-65. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.