IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v207y2025ics0047259x24001106.html
   My bibliography  Save this article

Sequential estimation of high-dimensional signal plus noise models under general elliptical frameworks

Author

Listed:
  • Yanpeng, Li
  • Jiahui, Xie
  • Guoliang, Zhou
  • Wang, Zhou

Abstract

High dimensional data analysis has attracted considerable interest and is facing new challenges, one of which is the increasingly available data with noise corrupted and in a streaming manner, such as signals and stocks. In this paper, we develop a sequential method to dynamically update the estimates of signal and noise strength in signal plus noise models. The proposed sequential method is easy to compute based on the stored statistics and the current data point. The consistency and, more importantly, the asymptotic normality of the estimators of signal strength and noise level are demonstrated for high dimensional settings under mild conditions. Simulations and real data examples are further provided to illustrate the practical utility of our proposal.

Suggested Citation

  • Yanpeng, Li & Jiahui, Xie & Guoliang, Zhou & Wang, Zhou, 2025. "Sequential estimation of high-dimensional signal plus noise models under general elliptical frameworks," Journal of Multivariate Analysis, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:jmvana:v:207:y:2025:i:c:s0047259x24001106
    DOI: 10.1016/j.jmva.2024.105403
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24001106
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. M. Johnstone & B. Nadler, 2017. "Roy’s largest root test under rank-one alternatives," Biometrika, Biometrika Trust, vol. 104(1), pages 181-193.
    2. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Zhang, Yangchun & Hu, Jiang & Li, Weiming, 2022. "CLT for linear spectral statistics of high-dimensional sample covariance matrices in elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    5. Yang, Xinxin & Zheng, Xinghua & Chen, Jiaqi, 2021. "Testing high-dimensional covariance matrices under the elliptical distribution and beyond," Journal of Econometrics, Elsevier, vol. 221(2), pages 409-423.
    6. Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
    7. Onatski, Alexei, 2012. "Asymptotics of the principal components estimator of large factor models with weakly influential factors," Journal of Econometrics, Elsevier, vol. 168(2), pages 244-258.
    8. Johnstone, Iain M. & Lu, Arthur Yu, 2009. "On Consistency and Sparsity for Principal Components Analysis in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 682-693.
    9. Chen, Songxi, 2012. "Two Sample Tests for High Dimensional Covariance Matrices," MPRA Paper 46026, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanpeng, 2025. "Large sample correlation matrices with unbounded spectrum," Journal of Multivariate Analysis, Elsevier, vol. 205(C).
    2. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    3. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053r, Institute of Social and Economic Research, The University of Osaka, revised Mar 2020.
    4. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    5. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    6. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    7. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    8. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    9. Guo, Wenwen & Cui, Hengjian, 2019. "Projection tests for high-dimensional spiked covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 21-32.
    10. Barigozzi, Matteo & Hallin, Marc & Luciani, Matteo & Zaffaroni, Paolo, 2024. "Inferential theory for generalized dynamic factor models," Journal of Econometrics, Elsevier, vol. 239(2).
    11. Raffaella Giacomini & Jason Lu & Katja Smetanina, 2024. "Perceived shocks and impulse responses," CeMMAP working papers 21/24, Institute for Fiscal Studies.
    12. Choi, Sung Hoon & Kim, Donggyu, 2023. "Large volatility matrix analysis using global and national factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1917-1933.
    13. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    14. Jin, Sainan & Miao, Ke & Su, Liangjun, 2021. "On factor models with random missing: EM estimation, inference, and cross validation," Journal of Econometrics, Elsevier, vol. 222(1), pages 745-777.
    15. Fan, Jianqing & Wang, Weichen & Zhong, Yiqiao, 2019. "Robust covariance estimation for approximate factor models," Journal of Econometrics, Elsevier, vol. 208(1), pages 5-22.
    16. Badi H. Baltagi & Chihwa Kao & Fa Wang, 2017. "Asymptotic power of the sphericity test under weak and strong factors in a fixed effects panel data model," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 853-882, October.
    17. Lettau, Martin & Pelger, Markus, 2020. "Estimating latent asset-pricing factors," Journal of Econometrics, Elsevier, vol. 218(1), pages 1-31.
    18. Jungjun Choi & Hyukjun Kwon & Yuan Liao, 2023. "Inference for Low-rank Models without Estimating the Rank," Papers 2311.16440, arXiv.org, revised Oct 2024.
    19. Yuefeng Han & Rong Chen & Cun-Hui Zhang, 2020. "Rank Determination in Tensor Factor Model," Papers 2011.07131, arXiv.org, revised May 2022.
    20. Sihan Tu & Zhaoxing Gao, 2025. "A Supervised Screening and Regularized Factor-Based Method for Time Series Forecasting," Papers 2502.15275, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:207:y:2025:i:c:s0047259x24001106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.