IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v205y2025ics0047259x24000824.html
   My bibliography  Save this article

Explicit bivariate simplicial depth

Author

Listed:
  • Mendroš, Erik
  • Nagy, Stanislav

Abstract

The simplicial depth (SD) is a celebrated tool defining elements of nonparametric and robust statistics for multivariate data. While many properties of SD are well-established, and its applications are abundant, explicit expressions for SD are known only for a handful of the simplest multivariate probability distributions. This paper deals with SD in the plane. It (i) develops a one-dimensional integral formula for SD of any properly continuous probability distribution, (ii) gives exact explicit expressions for SD of uniform distributions on (both convex and non-convex) polygons in the plane or on the boundaries of such polygons, and (iii) discusses several implications of these findings to probability and statistics: (a) An upper bound on the maximum SD in the plane, (b) an implication for a test of symmetry of a bivariate distribution, and (c) a connection of SD with the classical Sylvester problem from geometric probability.

Suggested Citation

  • Mendroš, Erik & Nagy, Stanislav, 2025. "Explicit bivariate simplicial depth," Journal of Multivariate Analysis, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:jmvana:v:205:y:2025:i:c:s0047259x24000824
    DOI: 10.1016/j.jmva.2024.105375
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000824
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    2. López-Pintado, Sara & Romo, Juan, 2009. "On the Concept of Depth for Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 718-734.
    3. repec:hal:spmain:info:hdl:2441/64itsev5509q8aa5mrbhi0g0b6 is not listed on IDEAS
    4. Timothy J. Killeen & Thomas P. Hettmansperger, 2021. "A bivariate test for location based on simplicial depth," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(17), pages 3954-3971, August.
    5. repec:spo:wpmain:info:hdl:2441/64itsev5509q8aa5mrbhi0g0b6 is not listed on IDEAS
    6. Jun Li & Juan A. Cuesta-Albertos & Regina Y. Liu, 2012. "DD -Classifier: Nonparametric Classification Procedure Based on DD -Plot," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 737-753, June.
    7. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    8. Ricardo Fraiman & Graciela Muniz, 2001. "Trimmed means for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 419-440, December.
    9. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2015. "Depth-based runs tests for bivariate central symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 917-941, October.
    10. Christoph P. Kustosz & Anne Leucht & Christine H. MÜller, 2016. "Tests Based on Simplicial Depth for AR(1) Models With Explosion," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 763-784, November.
    11. Chen, Z. Q., 1995. "Bounds for the Breakdown Point of the Simplicial Median," Journal of Multivariate Analysis, Elsevier, vol. 55(1), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davy Paindaveine & Germain Van Bever, 2017. "Halfspace Depths for Scatter, Concentration and Shape Matrices," Working Papers ECARES ECARES 2017-19, ULB -- Universite Libre de Bruxelles.
    2. Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.
    3. Carlo Sguera & Sara López-Pintado, 2021. "A notion of depth for sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 630-649, September.
    4. J. A. Cuesta-Albertos & M. Febrero-Bande & M. Oviedo de la Fuente, 2017. "The $$\hbox {DD}^G$$ DD G -classifier in the functional setting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 119-142, March.
    5. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    6. Jiménez Recaredo, Raúl José & Elías Fernández, Antonio, 2017. "Prediction Bands for Functional Data Based on Depth Measures," DES - Working Papers. Statistics and Econometrics. WS 24606, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
    8. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    9. Zhuo Qu & Wenlin Dai & Marc G. Genton, 2021. "Robust functional multivariate analysis of variance with environmental applications," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
    10. Flores Díaz, Ramón Jesús & Lillo Rodríguez, Rosa Elvira & Romo, Juan, 2014. "Homogeneity test for functional data based on depth measures," DES - Working Papers. Statistics and Econometrics. WS ws140101, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Hongjian Shi & Mathias Drton & Marc Hallin & Fang Han, 2023. "Semiparametrically Efficient Tests of Multivariate Independence Using Center-Outward Quadrant, Spearman, and Kendall Statistics," Working Papers ECARES 2023-03, ULB -- Universite Libre de Bruxelles.
    12. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
    13. Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
    14. Alba M. Franco-Pereira & Rosa E. Lillo, 2020. "Rank tests for functional data based on the epigraph, the hypograph and associated graphical representations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 651-676, September.
    15. Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
    16. Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," LSE Research Online Documents on Economics 120774, London School of Economics and Political Science, LSE Library.
    17. Cristian F. Jiménez‐Varón & Fouzi Harrou & Ying Sun, 2024. "Pointwise data depth for univariate and multivariate functional outlier detection," Environmetrics, John Wiley & Sons, Ltd., vol. 35(5), August.
    18. López-Pintado, Sara & Romo, Juan, 2011. "A half-region depth for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1679-1695, April.
    19. Gunsilius, Florian F., 2023. "A condition for the identification of multivariate models with binary instruments," Journal of Econometrics, Elsevier, vol. 235(1), pages 220-238.
    20. Sara López-Pintado & Ying Sun & Juan Lin & Marc Genton, 2014. "Simplicial band depth for multivariate functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 321-338, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:205:y:2025:i:c:s0047259x24000824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.