IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v188y2022ics0047259x2100107x.html
   My bibliography  Save this article

Three kinds of discrete approximations of statistical multivariate distributions and their applications

Author

Listed:
  • Yang, Jun
  • He, Ping
  • Fang, Kai-Tai

Abstract

Discrete approximations of statistical continuous distributions have been widely requested in various fields. Using random samples generated by Monte Carlo (MC) method to infer the population has been dominant in statistics. The empirical distribution of a random sample can be regarded as a discrete approximation of the population distribution in a certain statistical sense. However, MC has a poor performance in many problems. This paper concerns some alternative methods, such as Quasi-Monte Carlo (QMC) F-numbers and Mean Square Error Representative Points (MSE-RPs), and constructs approximation distributions for elliptically contoured distributions and skew-normal distributions. Numerical comparisons are given for two geometric probability problems and for estimation accuracy by resampling from the discrete approximation distributions obtained by MC, QMC and MSE-RPs. Our simulation results indicate that QMC and MSE-RPs have better performance in most comparisons. These results show that QMC and MSE-RPs have high potential in statistical inference. In addition, we also discuss the relationship between principal component analysis and MSE-RPs for elliptically contoured distributions, as well as its potential applications.

Suggested Citation

  • Yang, Jun & He, Ping & Fang, Kai-Tai, 2022. "Three kinds of discrete approximations of statistical multivariate distributions and their applications," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:jmvana:v:188:y:2022:i:c:s0047259x2100107x
    DOI: 10.1016/j.jmva.2021.104829
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X2100107X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2020. "New Weak Error bounds and expansions for Optimal Quantization," Post-Print hal-02361644, HAL.
    2. Shun Matsuura & Hiroshi Kurata, 2014. "Principal points for an allometric extension model," Statistical Papers, Springer, vol. 55(3), pages 853-870, August.
    3. Giorgia Callegaro & Lucio Fiorin & Martino Grasselli, 2017. "Pricing via recursive quantization in stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 17(6), pages 855-872, June.
    4. Xiaoqun Wang & Ian H. Sloan, 2011. "Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction," Operations Research, INFORMS, vol. 59(1), pages 80-95, February.
    5. Spassimir H. Paskov & Joseph F. Traub, 1995. "Faster Valuation of Financial Derivatives," Working Papers 95-03-034, Santa Fe Institute.
    6. Tarpey, T., 1995. "Principal Points and Self-Consistent Points of Symmetrical Multivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 53(1), pages 39-51, April.
    7. Bernard D. Flury, 1993. "Estimation of Principal Points," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(1), pages 139-151, March.
    8. Tarpey T. & Petkova E. & Ogden R.T., 2003. "Profiling Placebo Responders by Self-Consistent Partitioning of Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 850-858, January.
    9. Tarpey, Thaddeus & Loperfido, Nicola, 2015. "Self-consistency and a generalized principal subspace theorem," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 27-37.
    10. Matsuura, Shun & Kurata, Hiroshi, 2010. "A principal subspace theorem for 2-principal points of general location mixtures of spherically symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1863-1869, December.
    11. Yoshihiro Tashiro, 1977. "On methods for generating uniform random points on the surface of a sphere," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 29(1), pages 295-300, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long-Hao Xu & Kai-Tai Fang & Ping He, 2022. "Properties and generation of representative points of the exponential distribution," Statistical Papers, Springer, vol. 63(1), pages 197-223, February.
    2. Shun Matsuura & Thaddeus Tarpey, 2020. "Optimal principal points estimators of multivariate distributions of location-scale and location-scale-rotation families," Statistical Papers, Springer, vol. 61(4), pages 1629-1643, August.
    3. Santanu Chakraborty & Mrinal Kanti Roychowdhury & Josef Sifuentes, 2021. "High Precision Numerical Computation of Principal Points for Univariate Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 558-584, November.
    4. Shun Matsuura & Hiroshi Kurata, 2014. "Principal points for an allometric extension model," Statistical Papers, Springer, vol. 55(3), pages 853-870, August.
    5. Matsuura, Shun & Kurata, Hiroshi, 2011. "Principal points of a multivariate mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 213-224, February.
    6. Tarpey, Thaddeus & Loperfido, Nicola, 2015. "Self-consistency and a generalized principal subspace theorem," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 27-37.
    7. Matsuura, Shun & Kurata, Hiroshi, 2010. "A principal subspace theorem for 2-principal points of general location mixtures of spherically symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1863-1869, December.
    8. Bali, Juan Lucas & Boente, Graciela, 2009. "Principal points and elliptical distributions from the multivariate setting to the functional case," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1858-1865, September.
    9. Tarpey, Thaddeus, 2000. "Parallel Principal Axes," Journal of Multivariate Analysis, Elsevier, vol. 75(2), pages 295-313, November.
    10. Xiaoqun Wang, 2016. "Handling Discontinuities in Financial Engineering: Good Path Simulation and Smoothing," Operations Research, INFORMS, vol. 64(2), pages 297-314, April.
    11. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    12. Yamamoto, Wataru & Shinozaki, Nobuo, 2000. "On uniqueness of two principal points for univariate location mixtures," Statistics & Probability Letters, Elsevier, vol. 46(1), pages 33-42, January.
    13. Pötzelberger Klaus & Strasser Helmut, 2001. "Clustering And Quantization By Msp-Partitions," Statistics & Risk Modeling, De Gruyter, vol. 19(4), pages 331-372, April.
    14. Petkova Eva & Tarpey Thaddeus & Govindarajulu Usha, 2009. "Predicting Potential Placebo Effect in Drug Treated Subjects," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-27, July.
    15. Ye Xiao & Xiaoqun Wang, 2019. "Enhancing Quasi-Monte Carlo Simulation by Minimizing Effective Dimension for Derivative Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 343-366, June.
    16. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    17. George Chang, 2018. "Examining the Efficiency of American Put Option Pricing by Monte Carlo Methods with Variance Reduction," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(2), pages 10-13, February.
    18. John Rust & Joseph Traub & Henryk Wozniakowski, 1999. "No Curse of Dimensionality for Contraction Fixed Points Even in the Worst Case," Computational Economics 9902001, University Library of Munich, Germany.
    19. Aintablian, Sebouh & Khoury, Wissam El, 2017. "A simulation on the presence of competing bidders in mergers and acquisitions," Finance Research Letters, Elsevier, vol. 22(C), pages 233-243.
    20. Kucherenko, S. & Rodriguez-Fernandez, M. & Pantelides, C. & Shah, N., 2009. "Monte Carlo evaluation of derivative-based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1135-1148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:188:y:2022:i:c:s0047259x2100107x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.