IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v42y1993i1p139-151.html
   My bibliography  Save this article

Estimation of Principal Points

Author

Listed:
  • Bernard D. Flury

Abstract

The k principal points of a p‐variate random vector X are defined as those points ξ1, . . ., ξk which minimize the expected squared distance between X and the nearest of the ξj. This paper reviews some of the theory of principal points and redefines them in terms of self‐consistent points. An anthropometrical problem which initiated the theoretical developments is described. Four methods of estimation, ranging from normal theory maximum likelihood to the usual k‐means algorithm in cluster analysis, are introduced and applied to the example. Finally, a leave‐one‐out method is used to assess the performance of the four methods.

Suggested Citation

  • Bernard D. Flury, 1993. "Estimation of Principal Points," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(1), pages 139-151, March.
  • Handle: RePEc:bla:jorssc:v:42:y:1993:i:1:p:139-151
    DOI: 10.2307/2347416
    as

    Download full text from publisher

    File URL: https://doi.org/10.2307/2347416
    Download Restriction: no

    File URL: https://libkey.io/10.2307/2347416?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Feng, 2022. "Uniqueness of principal points with respect to p-order distance for a class of univariate continuous distribution," Statistics & Probability Letters, Elsevier, vol. 183(C).
    2. Li, Luning & Flury, Bernard, 1995. "Uniqueness of principal points for univariate distributions," Statistics & Probability Letters, Elsevier, vol. 25(4), pages 323-327, December.
    3. Thaddeus Tarpey, 1997. "Estimating principal points of univariate distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(5), pages 499-512.
    4. Jiang, Jia-Jian & He, Ping & Fang, Kai-Tai, 2015. "An interesting property of the arcsine distribution and its applications," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 88-95.
    5. Tarpey, Thaddeus, 2000. "Parallel Principal Axes," Journal of Multivariate Analysis, Elsevier, vol. 75(2), pages 295-313, November.
    6. Shun Matsuura & Thaddeus Tarpey, 2020. "Optimal principal points estimators of multivariate distributions of location-scale and location-scale-rotation families," Statistical Papers, Springer, vol. 61(4), pages 1629-1643, August.
    7. Yamamoto, Wataru & Shinozaki, Nobuo, 2000. "On uniqueness of two principal points for univariate location mixtures," Statistics & Probability Letters, Elsevier, vol. 46(1), pages 33-42, January.
    8. Shun Matsuura & Hiroshi Kurata, 2014. "Principal points for an allometric extension model," Statistical Papers, Springer, vol. 55(3), pages 853-870, August.
    9. Bali, Juan Lucas & Boente, Graciela, 2009. "Principal points and elliptical distributions from the multivariate setting to the functional case," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1858-1865, September.
    10. Kai-Tai Fang & Jianxin Pan, 2023. "A Review of Representative Points of Statistical Distributions and Their Applications," Mathematics, MDPI, vol. 11(13), pages 1-25, June.
    11. Tarpey, Thaddeus & Loperfido, Nicola, 2015. "Self-consistency and a generalized principal subspace theorem," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 27-37.
    12. Matsuura, Shun & Kurata, Hiroshi, 2011. "Principal points of a multivariate mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 213-224, February.
    13. Santanu Chakraborty & Mrinal Kanti Roychowdhury & Josef Sifuentes, 2021. "High Precision Numerical Computation of Principal Points for Univariate Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 558-584, November.
    14. Yinan Li & Kai-Tai Fang & Ping He & Heng Peng, 2022. "Representative Points from a Mixture of Two Normal Distributions," Mathematics, MDPI, vol. 10(21), pages 1-28, October.
    15. Long-Hao Xu & Kai-Tai Fang & Ping He, 2022. "Properties and generation of representative points of the exponential distribution," Statistical Papers, Springer, vol. 63(1), pages 197-223, February.
    16. Pötzelberger Klaus & Strasser Helmut, 2001. "Clustering And Quantization By Msp-Partitions," Statistics & Risk Modeling, De Gruyter, vol. 19(4), pages 331-372, April.
    17. Petkova Eva & Tarpey Thaddeus & Govindarajulu Usha, 2009. "Predicting Potential Placebo Effect in Drug Treated Subjects," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-27, July.
    18. Thaddeus Tarpey, 2007. "A parametric k-means algorithm," Computational Statistics, Springer, vol. 22(1), pages 71-89, April.
    19. Yang, Jun & He, Ping & Fang, Kai-Tai, 2022. "Three kinds of discrete approximations of statistical multivariate distributions and their applications," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    20. Sirao Wang & Jiajuan Liang & Min Zhou & Huajun Ye, 2022. "Testing Multivariate Normality Based on F -Representative Points," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    21. Matsuura, Shun & Kurata, Hiroshi, 2010. "A principal subspace theorem for 2-principal points of general location mixtures of spherically symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1863-1869, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:42:y:1993:i:1:p:139-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.