IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v152y2016icp1-14.html
   My bibliography  Save this article

Group-wise semiparametric modeling: A SCSE approach

Author

Listed:
  • Song, Song
  • Zhu, Lixing

Abstract

This paper is motivated by the modeling of a high-dimensional dataset via group-wise information on explanatory variables. A three-step algorithm is suggested for group-wise semiparametric modeling: (i) screening to reduce dimensionality; (ii) clustering according to grouped explanatory variables; (iii) sign-constraints-based estimation for coefficients to produce meaningful interpretations. As a justification, under the setup of m-dependent and β-mixing processes, the interplay between the estimator’s convergence rate and the temporal dependence level is quantified and a cross-validation result about the resampling scheme for threshold selection is also proved. This method is evaluated in finite-sample cases through a Monte Carlo experiment, and illustrated with an analysis of the US consumer price index.

Suggested Citation

  • Song, Song & Zhu, Lixing, 2016. "Group-wise semiparametric modeling: A SCSE approach," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 1-14.
  • Handle: RePEc:eee:jmvana:v:152:y:2016:i:c:p:1-14
    DOI: 10.1016/j.jmva.2016.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16300501
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics,in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148 Elsevier.
    2. Genest, Christian & Nešlehová, Johanna G. & Rémillard, Bruno, 2013. "On the estimation of Spearman’s rho and related tests of independence for possibly discontinuous multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 214-228.
    3. Chudik, Alexander & Pesaran, M. Hashem, 2011. "Infinite-dimensional VARs and factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 4-22, July.
    4. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911.
    5. Song Song & Peter J. Bickel, 2011. "Large Vector Auto Regressions," SFB 649 Discussion Papers SFB649DP2011-048, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. Song Song & Peter J. Bickel, 2011. "Large Vector Auto Regressions," Papers 1106.3915, arXiv.org.
    7. Li, Lexin & Li, Bing & Zhu, Li-Xing, 2010. "Groupwise Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1188-1201.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:152:y:2016:i:c:p:1-14. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.