IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v56y2016ipap48-56.html
   My bibliography  Save this article

Pre-tactical optimization of runway utilization under uncertainty

Author

Listed:
  • Kapolke, Manu
  • Fürstenau, Norbert
  • Heidt, Andreas
  • Liers, Frauke
  • Mittendorf, Monika
  • Weiß, Christian

Abstract

Efficient planning of runway utilization is one of the main challenges in Air Traffic Management (ATM). It is important because runway is the combining element between airside and groundside. Furthermore, it is a bottleneck in many cases. In this paper, we develop a specific optimization approach for the pre-tactical planning phase that reduces complexity by omitting unnecessary information. Instead of determining arrival/departure times to the minute in this phase yet, we assign several aircraft to the same time window of a given size. The exact orders within those time windows can be decided later in tactical planning. Mathematically, we solve a generalized assignment problem on a bipartite graph. To know how many aircraft can be assigned to one time window, we consider separation requirements for consecutive aircraft types. In reality, however, uncertainty and inaccuracy almost always lead to deviations from the actual plan or schedule. Thus, we present approaches to incorporate uncertainty directly in our model in order to achieve a stabilization with respect to changes in the data. Namely, we use techniques from robust optimization and stochastic optimization. Further, we analyze real-world data from a large German airport to obtain realistic delay distributions, which turn out to be two-parametric Γ-distributions. Finally, we describe a simulation environment to test our new solution methods.

Suggested Citation

  • Kapolke, Manu & Fürstenau, Norbert & Heidt, Andreas & Liers, Frauke & Mittendorf, Monika & Weiß, Christian, 2016. "Pre-tactical optimization of runway utilization under uncertainty," Journal of Air Transport Management, Elsevier, vol. 56(PA), pages 48-56.
  • Handle: RePEc:eee:jaitra:v:56:y:2016:i:pa:p:48-56
    DOI: 10.1016/j.jairtraman.2016.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699716000181
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2016.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Guglielmo Lulli & Amedeo Odoni, 2011. "An Integer Optimization Approach to Large-Scale Air Traffic Flow Management," Operations Research, INFORMS, vol. 59(1), pages 211-227, February.
    2. Abdel-Aty, Mohamed & Lee, Chris & Bai, Yuqiong & Li, Xin & Michalak, Martin, 2007. "Detecting periodic patterns of arrival delay," Journal of Air Transport Management, Elsevier, vol. 13(6), pages 355-361.
    3. Tu, Yufeng & Ball, Michael O. & Jank, Wolfgang S., 2008. "Estimating Flight Departure Delay DistributionsA Statistical Approach With Long-Term Trend and Short-Term Pattern," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 112-125, March.
    4. J. E. Beasley & M. Krishnamoorthy & Y. M. Sharaiha & D. Abramson, 2000. "Scheduling Aircraft Landings—The Static Case," Transportation Science, INFORMS, vol. 34(2), pages 180-197, May.
    5. Hamsa Balakrishnan & Bala G. Chandran, 2010. "Algorithms for Scheduling Runway Operations Under Constrained Position Shifting," Operations Research, INFORMS, vol. 58(6), pages 1650-1665, December.
    6. Soomer, M.J. & Franx, G.J., 2008. "Scheduling aircraft landings using airlines' preferences," European Journal of Operational Research, Elsevier, vol. 190(1), pages 277-291, October.
    7. Wong, Jinn-Tsai & Tsai, Shy-Chang, 2012. "A survival model for flight delay propagation," Journal of Air Transport Management, Elsevier, vol. 23(C), pages 5-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Khassiba & Fabian Bastin & Sonia Cafieri & Bernard Gendron & Marcel Mongeau, 2020. "Two-Stage Stochastic Mixed-Integer Programming with Chance Constraints for Extended Aircraft Arrival Management," Transportation Science, INFORMS, vol. 54(4), pages 897-919, July.
    2. Anna Kwasiborska & Jacek Skorupski, 2021. "Assessment of the Method of Merging Landing Aircraft Streams in the Context of Fuel Consumption in the Airspace," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    3. Heidt, Andreas & Helmke, Hartmut & Kapolke, Manu & Liers, Frauke & Martin, Alexander, 2016. "Robust runway scheduling under uncertain conditions," Journal of Air Transport Management, Elsevier, vol. 56(PA), pages 28-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    2. Bo Xu & Weimin Ma & Hui Huang & Lei Yue, 2016. "Weighted Constrained Position Shift Model for Aircraft Arrival Sequencing and Scheduling Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-22, August.
    3. Rakesh Prakash & Jitamitra Desai & Rajesh Piplani, 2022. "An optimal data-splitting algorithm for aircraft sequencing on a single runway," Annals of Operations Research, Springer, vol. 309(2), pages 587-610, February.
    4. Rodríguez-Sanz, à lvaro & Comendador, Fernando Gómez & Valdés, Rosa Arnaldo & Pérez-Castán, Javier A., 2018. "Characterization and prediction of the airport operational saturation," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 147-172.
    5. Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
    6. James C. Jones & David J. Lovell & Michael O. Ball, 2018. "Stochastic Optimization Models for Transferring Delay Along Flight Trajectories to Reduce Fuel Usage," Transportation Science, INFORMS, vol. 52(1), pages 134-149, January.
    7. Senay Solak & Gustaf Solveling & John-Paul B. Clarke & Ellis L. Johnson, 2018. "Stochastic Runway Scheduling," Transportation Science, INFORMS, vol. 52(4), pages 917-940, August.
    8. Ahmed Ghoniem & Hanif D. Sherali & Hojong Baik, 2014. "Enhanced Models for a Mixed Arrival-Departure Aircraft Sequencing Problem," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 514-530, August.
    9. Chandra, Aitichya & Verma, Ashish & Sooraj, K.P. & Padhi, Radhakant, 2023. "Modelling and assessment of the arrival and departure process at the terminal area: A case study of Chennai international airport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    10. Murça, Mayara Condé Rocha, 2018. "Collaborative air traffic flow management: Incorporating airline preferences in rerouting decisions," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 97-107.
    11. Guépet, Julien & Briant, Olivier & Gayon, Jean-Philippe & Acuna-Agost, Rodrigo, 2017. "Integration of aircraft ground movements and runway operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 131-149.
    12. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    13. Anna Kwasiborska & Jacek Skorupski, 2021. "Assessment of the Method of Merging Landing Aircraft Streams in the Context of Fuel Consumption in the Airspace," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    14. Kim, Myeonghyeon & Bae, Jiheon, 2021. "Modeling the flight departure delay using survival analysis in South Korea," Journal of Air Transport Management, Elsevier, vol. 91(C).
    15. Zhe Zheng & Wenbin Wei & Bo Zou & Minghua Hu, 2020. "How Late Does Your Flight Depart? A Quantile Regression Approach for a Chinese Case Study," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    16. Lieder, Alexander & Briskorn, Dirk & Stolletz, Raik, 2015. "A dynamic programming approach for the aircraft landing problem with aircraft classes," European Journal of Operational Research, Elsevier, vol. 243(1), pages 61-69.
    17. Salehipour, Amir, 2020. "An algorithm for single- and multiple-runway aircraft landing problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 175(C), pages 179-191.
    18. Sternberg, Alice & Carvalho, Diego & Murta, Leonardo & Soares, Jorge & Ogasawara, Eduardo, 2016. "An analysis of Brazilian flight delays based on frequent patterns," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 282-298.
    19. Pohl, Maximilian & Kolisch, Rainer & Schiffer, Maximilian, 2021. "Runway scheduling during winter operations," Omega, Elsevier, vol. 102(C).
    20. Daniel Karapetyan & Jason A. D. Atkin & Andrew J. Parkes & Juan Castro-Gutierrez, 2017. "Lessons from building an automated pre-departure sequencer for airports," Annals of Operations Research, Springer, vol. 252(2), pages 435-453, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:56:y:2016:i:pa:p:48-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.