IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v52y2018i4p917-940.html
   My bibliography  Save this article

Stochastic Runway Scheduling

Author

Listed:
  • Senay Solak

    (Isenberg School of Management, University of Massachusetts, Amherst, Massachusetts 01003)

  • Gustaf Solveling

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • John-Paul B. Clarke

    (School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Ellis L. Johnson

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

Runway scheduling deals with the sequencing of arriving and departing aircraft at airports such that a predefined objective is optimized subject to several operational constraints. Different from the existing deterministic approaches in the literature, we consider a new approach to the stochastic version of this problem within the general context of machine scheduling problems. As part of our analysis, we first show that a restricted version of the stochastic runway-scheduling problem is equivalent to a machine-scheduling problem on a single machine with sequence-dependent setup times and stochastic due dates. We then extend this restricted model by considering characteristics specific to the runway-scheduling problem and present two different stochastic integer programming models. We derive some tight valid inequalities for these formulations and propose a solution methodology based on sample average approximation and Lagrangian-based scenario decomposition. Realistic data sets are then used to perform a detailed computational study involving implementations and analyses of several different configurations of the models. The results from the computational tests indicate that truncated versions of the proposed solution algorithm, where the best solution is reported after short run times, almost always produce very high-quality solutions, implying that the proposed stochastic approach to runway scheduling is likely to be practically implementable with potential value over current practice or deterministic models.

Suggested Citation

  • Senay Solak & Gustaf Solveling & John-Paul B. Clarke & Ellis L. Johnson, 2018. "Stochastic Runway Scheduling," Transportation Science, INFORMS, vol. 52(4), pages 917-940, August.
  • Handle: RePEc:inm:ortrsc:v:52:y:2018:i:4:p:917-940
    DOI: 10.1287/trsc.2017.0784
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2017.0784
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2017.0784?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wu, Xianyi & Zhou, Xian, 2008. "Stochastic scheduling to minimize expected maximum lateness," European Journal of Operational Research, Elsevier, vol. 190(1), pages 103-115, October.
    2. Hamsa Balakrishnan & Bala G. Chandran, 2010. "Algorithms for Scheduling Runway Operations Under Constrained Position Shifting," Operations Research, INFORMS, vol. 58(6), pages 1650-1665, December.
    3. Harilaos N. Psaraftis, 1980. "A Dynamic Programming Approach for Sequencing Groups of Identical Jobs," Operations Research, INFORMS, vol. 28(6), pages 1347-1359, December.
    4. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    5. Soomer, M.J. & Franx, G.J., 2008. "Scheduling aircraft landings using airlines' preferences," European Journal of Operational Research, Elsevier, vol. 190(1), pages 277-291, October.
    6. Angel Marín & Esteve Codina, 2008. "Network design: taxi planning," Annals of Operations Research, Springer, vol. 157(1), pages 135-151, January.
    7. F Jin & J N D Gupta & S Song & C Wu, 2010. "Single machine scheduling with sequence-dependent family setups to minimize maximum lateness," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(7), pages 1181-1189, July.
    8. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    9. Alexander Shapiro, 2003. "Inference of statistical bounds for multistage stochastic programming problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 58(1), pages 57-68, September.
    10. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    11. Solak, Senay & Clarke, John-Paul B. & Johnson, Ellis L. & Barnes, Earl R., 2010. "Optimization of R&D project portfolios under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 207(1), pages 420-433, November.
    12. Jean-Claude Picard & Maurice Queyranne, 1978. "The Time-Dependent Traveling Salesman Problem and Its Application to the Tardiness Problem in One-Machine Scheduling," Operations Research, INFORMS, vol. 26(1), pages 86-110, February.
    13. J. E. Beasley & M. Krishnamoorthy & Y. M. Sharaiha & D. Abramson, 2000. "Scheduling Aircraft Landings—The Static Case," Transportation Science, INFORMS, vol. 34(2), pages 180-197, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pohl, Maximilian & Kolisch, Rainer & Schiffer, Maximilian, 2021. "Runway scheduling during winter operations," Omega, Elsevier, vol. 102(C).
    2. Marcella Samà & Andrea D’Ariano & Konstantin Palagachev & Matthias Gerdts, 2019. "Integration methods for aircraft scheduling and trajectory optimization at a busy terminal manoeuvring area," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 641-681, September.
    3. Peyman Babashamsi & Shabir Hussain Khahro & Hend Ali Omar & Abdulnaser M. Al-Sabaeei & Abdul Muhaimin Memon & Abdalrhman Milad & Muhammad Imran Khan & Muslich Hartadi Sutanto & Nur Izzi Md Yusoff, 2022. "Perspective of Life-Cycle Cost Analysis and Risk Assessment for Airport Pavement in Delaying Preventive Maintenance," Sustainability, MDPI, vol. 14(5), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rakesh Prakash & Jitamitra Desai & Rajesh Piplani, 2022. "An optimal data-splitting algorithm for aircraft sequencing on a single runway," Annals of Operations Research, Springer, vol. 309(2), pages 587-610, February.
    2. Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
    3. Bo Xu & Weimin Ma & Hui Huang & Lei Yue, 2016. "Weighted Constrained Position Shift Model for Aircraft Arrival Sequencing and Scheduling Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-22, August.
    4. Pohl, Maximilian & Kolisch, Rainer & Schiffer, Maximilian, 2021. "Runway scheduling during winter operations," Omega, Elsevier, vol. 102(C).
    5. Geert De Maere & Jason A. D. Atkin & Edmund K. Burke, 2018. "Pruning Rules for Optimal Runway Sequencing," Transportation Science, INFORMS, vol. 52(4), pages 898-916, August.
    6. Ahmed Ghoniem & Hanif D. Sherali & Hojong Baik, 2014. "Enhanced Models for a Mixed Arrival-Departure Aircraft Sequencing Problem," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 514-530, August.
    7. Jason A. D. Atkin & Geert De Maere & Edmund K. Burke & John S. Greenwood, 2013. "Addressing the Pushback Time Allocation Problem at Heathrow Airport," Transportation Science, INFORMS, vol. 47(4), pages 584-602, November.
    8. Marcella Samà & Andrea D’Ariano & Konstantin Palagachev & Matthias Gerdts, 2019. "Integration methods for aircraft scheduling and trajectory optimization at a busy terminal manoeuvring area," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 641-681, September.
    9. Lieder, Alexander & Briskorn, Dirk & Stolletz, Raik, 2015. "A dynamic programming approach for the aircraft landing problem with aircraft classes," European Journal of Operational Research, Elsevier, vol. 243(1), pages 61-69.
    10. Julia Bennell & Mohammad Mesgarpour & Chris Potts, 2013. "Airport runway scheduling," Annals of Operations Research, Springer, vol. 204(1), pages 249-270, April.
    11. Pohl, Maximilian & Artigues, Christian & Kolisch, Rainer, 2022. "Solving the time-discrete winter runway scheduling problem: A column generation and constraint programming approach," European Journal of Operational Research, Elsevier, vol. 299(2), pages 674-689.
    12. Bennell, Julia A. & Mesgarpour, Mohammad & Potts, Chris N., 2017. "Dynamic scheduling of aircraft landings," European Journal of Operational Research, Elsevier, vol. 258(1), pages 315-327.
    13. Kapolke, Manu & Fürstenau, Norbert & Heidt, Andreas & Liers, Frauke & Mittendorf, Monika & Weiß, Christian, 2016. "Pre-tactical optimization of runway utilization under uncertainty," Journal of Air Transport Management, Elsevier, vol. 56(PA), pages 48-56.
    14. Baker, Erin & Solak, Senay, 2011. "Climate change and optimal energy technology R&D policy," European Journal of Operational Research, Elsevier, vol. 213(2), pages 442-454, September.
    15. A R Brentnall & R C H Cheng, 2009. "Some effects of aircraft arrival sequence algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 962-972, July.
    16. Murça, Mayara Condé Rocha, 2018. "Collaborative air traffic flow management: Incorporating airline preferences in rerouting decisions," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 97-107.
    17. Guépet, Julien & Briant, Olivier & Gayon, Jean-Philippe & Acuna-Agost, Rodrigo, 2017. "Integration of aircraft ground movements and runway operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 131-149.
    18. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    19. Anna Kwasiborska & Jacek Skorupski, 2021. "Assessment of the Method of Merging Landing Aircraft Streams in the Context of Fuel Consumption in the Airspace," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    20. Sha, Yue & Zhang, Junlong & Cao, Hui, 2021. "Multistage stochastic programming approach for joint optimization of job scheduling and material ordering under endogenous uncertainties," European Journal of Operational Research, Elsevier, vol. 290(3), pages 886-900.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:52:y:2018:i:4:p:917-940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.