IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v39y2023i4p1573-1592.html
   My bibliography  Save this article

Robust regression for electricity demand forecasting against cyberattacks

Author

Listed:
  • VandenHeuvel, Daniel
  • Wu, Jinran
  • Wang, You-Gan

Abstract

Standard methods for forecasting electricity loads are not robust to cyberattacks on electricity demand data, potentially leading to severe consequences such as major economic loss or a system blackout. Methods are required that can handle forecasting under these conditions and detect outliers that would otherwise go unnoticed. The key challenge is to remove as many outliers as possible while maintaining enough clean data to use in the regression. In this paper we investigate robust approaches with data-driven tuning parameters, and in particular present an adaptive trimmed regression method that can better detect outliers and provide improved forecasts. In general, data-driven approaches perform much better than their fixed tuning parameter counterparts. Recommendations for future work are provided.

Suggested Citation

  • VandenHeuvel, Daniel & Wu, Jinran & Wang, You-Gan, 2023. "Robust regression for electricity demand forecasting against cyberattacks," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1573-1592.
  • Handle: RePEc:eee:intfor:v:39:y:2023:i:4:p:1573-1592
    DOI: 10.1016/j.ijforecast.2022.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016920702200142X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2022.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Pinson & Liyang Han & Jalal Kazempour, 2022. "Regression markets and application to energy forecasting," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 533-573, October.
    2. Jiao, Jieying & Tang, Zefan & Zhang, Peng & Yue, Meng & Yan, Jun, 2022. "Cyberattack-resilient load forecasting with adaptive robust regression," International Journal of Forecasting, Elsevier, vol. 38(3), pages 910-919.
    3. Jiang, Ping & Li, Ranran & Liu, Ningning & Gao, Yuyang, 2020. "A novel composite electricity demand forecasting framework by data processing and optimized support vector machine," Applied Energy, Elsevier, vol. 260(C).
    4. Hong, Tao & Pinson, Pierre & Fan, Shu, 2014. "Global Energy Forecasting Competition 2012," International Journal of Forecasting, Elsevier, vol. 30(2), pages 357-363.
    5. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    6. Gaillard, Pierre & Goude, Yannig & Nedellec, Raphaël, 2016. "Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1038-1050.
    7. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    8. Luo, Jian & Hong, Tao & Fang, Shu-Cherng, 2018. "Benchmarking robustness of load forecasting models under data integrity attacks," International Journal of Forecasting, Elsevier, vol. 34(1), pages 89-104.
    9. Dudek, Grzegorz, 2016. "Multilayer perceptron for GEFCom2014 probabilistic electricity price forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1057-1060.
    10. Jasiūnas, Justinas & Lund, Peter D. & Mikkola, Jani & Koskela, Liinu, 2021. "Linking socio-economic aspects to power system disruption models," Energy, Elsevier, vol. 222(C).
    11. Kanda, Isao & Veguillas, J.M. Quintana, 2019. "Data preprocessing and quantile regression for probabilistic load forecasting in the GEFCom2017 final match," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1460-1468.
    12. Haeran Cho & Yannig Goude & Xavier Brossat & Qiwei Yao, 2013. "Modeling and Forecasting Daily Electricity Load Curves: A Hybrid Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 7-21, March.
    13. Tao Hong, 2014. "Energy Forecasting: Past, Present, and Future," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 32, pages 43-48, Winter.
    14. Bedi, Jatin & Toshniwal, Durga, 2019. "Deep learning framework to forecast electricity demand," Applied Energy, Elsevier, vol. 238(C), pages 1312-1326.
    15. Zeng, Zijian & Li, Meng, 2021. "Bayesian median autoregression for robust time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 1000-1010.
    16. Lu, Hongfang & Ma, Xin & Ma, Minda, 2021. "A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering COVID-19," Energy, Elsevier, vol. 219(C).
    17. Neykov, N. & Filzmoser, P. & Dimova, R. & Neytchev, P., 2007. "Robust fitting of mixtures using the trimmed likelihood estimator," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 299-308, September.
    18. Hannah E. Correia & Asheber Abebe, 2021. "Regularised rank quasi-likelihood estimation for generalised additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 33(1), pages 101-117, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Moreno-Carbonell, Santiago & Sánchez-Úbeda, Eugenio F. & Muñoz, Antonio, 2020. "Rethinking weather station selection for electric load forecasting using genetic algorithms," International Journal of Forecasting, Elsevier, vol. 36(2), pages 695-712.
    3. Claudio Monteiro & Ignacio J. Ramirez-Rosado & L. Alfredo Fernandez-Jimenez, 2018. "Probabilistic Electricity Price Forecasting Models by Aggregation of Competitive Predictors," Energies, MDPI, vol. 11(5), pages 1-25, April.
    4. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    5. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    6. Jiao, Jieying & Tang, Zefan & Zhang, Peng & Yue, Meng & Yan, Jun, 2022. "Cyberattack-resilient load forecasting with adaptive robust regression," International Journal of Forecasting, Elsevier, vol. 38(3), pages 910-919.
    7. Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," Applied Energy, Elsevier, vol. 301(C).
    8. Sheybanivaziri, Samaneh & Le Dréau, Jérôme & Kazmi, Hussain, 2024. "Forecasting price spikes in day-ahead electricity markets: techniques, challenges, and the road ahead," Discussion Papers 2024/1, Norwegian School of Economics, Department of Business and Management Science.
    9. Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
    10. Nowotarski, Jakub & Weron, Rafał, 2016. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 57(C), pages 228-235.
    11. Nowotarski, Jakub & Liu, Bidong & Weron, Rafał & Hong, Tao, 2016. "Improving short term load forecast accuracy via combining sister forecasts," Energy, Elsevier, vol. 98(C), pages 40-49.
    12. Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
    13. Jakub Nowotarski & Rafal Weron, 2016. "To combine or not to combine? Recent trends in electricity price forecasting," HSC Research Reports HSC/16/01, Hugo Steinhaus Center, Wroclaw University of Technology.
    14. Bartosz Uniejewski, 2023. "Electricity price forecasting with Smoothing Quantile Regression Averaging: Quantifying economic benefits of probabilistic forecasts," Papers 2302.00411, arXiv.org, revised Jan 2024.
    15. Bidong Liu & Jakub Nowotarski & Tao Hong & Rafal Weron, 2015. "Probabilistic load forecasting via Quantile Regression Averaging on sister forecasts," HSC Research Reports HSC/15/01, Hugo Steinhaus Center, Wroclaw University of Technology.
    16. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Technology.
    17. Grzegorz Marcjasz & Bartosz Uniejewski & Rafal Weron, 2017. "Importance of the long-term seasonal component in day-ahead electricity price forecasting revisited: Neural network models," HSC Research Reports HSC/17/03, Hugo Steinhaus Center, Wroclaw University of Technology.
    18. Ziel, Florian & Steinert, Rick, 2018. "Probabilistic mid- and long-term electricity price forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 251-266.
    19. Gunnhildur H. Steinbakk & Alex Lenkoski & Ragnar Bang Huseby & Anders L{o}land & Tor Arne {O}ig{aa}rd, 2018. "Using published bid/ask curves to error dress spot electricity price forecasts," Papers 1812.02433, arXiv.org.
    20. Ziel, Florian & Weron, Rafał, 2018. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks," Energy Economics, Elsevier, vol. 70(C), pages 396-420.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:39:y:2023:i:4:p:1573-1592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.