IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v27y2011i2p438-451.html
   My bibliography  Save this article

Predicting economic contractions and expansions with the aid of professional forecasts

Author

Listed:
  • Chua, Chew Lian
  • Tsiaplias, Sarantis

Abstract

Traditional econometric models of economic contractions typically perform poorly in forecasting exercises. This criticism is also frequently levelled at professional forecast probabilities of contractions. This paper addresses the problem of incorporating the entire distribution of professional forecasts into an econometric model for forecasting contractions and expansions. A new augmented probit approach is proposed, involving the transformation of the distribution of professional forecasts into a ‘professional forecast’ prior for the economic data underlying the probit model. Since the object of interest is the relationship between the distribution of professional forecasts and the probit model’s economic-data dependent parameters, the solution avoids criticisms levelled at the accuracy of professional forecast based point estimates of contractions. An application to US real GDP data shows that the model yields significant forecast improvements relative to alternative approaches.

Suggested Citation

  • Chua, Chew Lian & Tsiaplias, Sarantis, 2011. "Predicting economic contractions and expansions with the aid of professional forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 438-451.
  • Handle: RePEc:eee:intfor:v:27:y:2011:i:2:p:438-451 DOI: 10.1016/j.ijforecast.2010.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016920701000018X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ramey, Garey & Ramey, Valerie A, 1995. "Cross-Country Evidence on the Link between Volatility and Growth," American Economic Review, American Economic Association, pages 1138-1151.
    2. Giordani, Paolo & Soderlind, Paul, 2003. "Inflation forecast uncertainty," European Economic Review, Elsevier, pages 1037-1059.
    3. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, pages 830-840.
    4. Kling, John L, 1987. "Predicting the Turning Points of Business and Economic Time Series," The Journal of Business, University of Chicago Press, vol. 60(2), pages 201-238, April.
    5. LeSage, James P, 1991. "Analysis and Development of Leading Indicators Using a Bayesian Turning-Points Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(3), pages 305-316, July.
    6. Engelberg, Joseph & Manski, Charles F. & Williams, Jared, 2009. "Comparing the Point Predictions and Subjective Probability Distributions of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 30-41.
    7. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, pages 191-221.
    8. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(03), pages 409-431, August.
    9. Tilman Ehrbeck & Robert Waldmann, 1996. "Why Are Professional Forecasters Biased? Agency versus Behavioral Explanations," The Quarterly Journal of Economics, Oxford University Press, vol. 111(1), pages 21-40.
    10. Fintzen, David & Stekler, H. O., 1999. "Why did forecasters fail to predict the 1990 recession?," International Journal of Forecasting, Elsevier, vol. 15(3), pages 309-323, July.
    11. Stekler, H O, 1972. "An Analysis of Turning Point Forecasts," American Economic Review, American Economic Association, pages 724-729.
    12. Graham, John R, 1996. "Is a Group of Economists Better than One? Than None?," The Journal of Business, University of Chicago Press, vol. 69(2), pages 193-232, April.
    13. Li, David T & Dorfman, Jeffrey H, 1996. "Predicting Turning Points through the Integration of Multiple Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 421-428, October.
    14. Oller, Lars-Erik & Barot, Bharat, 2000. "The accuracy of European growth and inflation forecasts," International Journal of Forecasting, Elsevier, pages 293-315.
    15. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    16. Lamont, Owen A., 2002. "Macroeconomic forecasts and microeconomic forecasters," Journal of Economic Behavior & Organization, Elsevier, vol. 48(3), pages 265-280, July.
    17. Taylor, James W., 2008. "Exponentially weighted information criteria for selecting among forecasting models," International Journal of Forecasting, Elsevier, vol. 24(3), pages 513-524.
    18. David Laster & Paul Bennett & In Sun Geoum, 1999. "Rational Bias in Macroeconomic Forecasts," The Quarterly Journal of Economics, Oxford University Press, vol. 114(1), pages 293-318.
    19. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. IIZUKA Nobuo, 2013. "Predicting Business Cycle Phases by Professional Forecasters- Are They Useful ?," ESRI Discussion paper series 305, Economic and Social Research Institute (ESRI).
    2. Sergey V. Smirnov & Daria A. Avdeeva, 2016. "Wishful Bias in Predicting Us Recessions: Indirect Evidence," HSE Working papers WP BRP 135/EC/2016, National Research University Higher School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y:2011:i:2:p:438-451. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.