IDEAS home Printed from https://ideas.repec.org/a/eee/intell/v62y2017icp54-70.html
   My bibliography  Save this article

Estimating the dimensionality of intelligence like data using Exploratory Graph Analysis

Author

Listed:
  • Golino, Hudson F.
  • Demetriou, Andreas

Abstract

This study compared various exploratory and confirmatory factor methods for recovering factors of cognitive test-like data. We first note the problems encountered by several widely used methods, such as parallel analysis, minimum average partial procedure, and confirmatory factor analysis, in estimating the number of dimensions underlying performance on test batteries. We then argue that a new method, Exploratory Graph Analysis (EGA), can more accurately uncover underlying dimensions or factors and demonstrate how this method outperforms the other methods. We use several published data sets to demonstrate the advantages of EGA. We conclude that a combination of EGA and confirmatory factor analysis or structural equation modeling may be the ideal in precisely specifying latent factors and their relations.

Suggested Citation

  • Golino, Hudson F. & Demetriou, Andreas, 2017. "Estimating the dimensionality of intelligence like data using Exploratory Graph Analysis," Intelligence, Elsevier, vol. 62(C), pages 54-70.
  • Handle: RePEc:eee:intell:v:62:y:2017:i:c:p:54-70
    DOI: 10.1016/j.intell.2017.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160289616302240
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intell.2017.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Epskamp, Sacha & Cramer, Angélique O.J. & Waldorp, Lourens J. & Schmittmann, Verena D. & Borsboom, Denny, 2012. "qgraph: Network Visualizations of Relationships in Psychometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i04).
    2. John Horn, 1965. "A rationale and test for the number of factors in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 30(2), pages 179-185, June.
    3. Louis Guttman, 1954. "Some necessary conditions for common-factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 19(2), pages 149-161, June.
    4. Rosseel, Yves, 2012. "lavaan: An R Package for Structural Equation Modeling," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i02).
    5. Wayne Velicer, 1976. "Determining the number of components from the matrix of partial correlations," Psychometrika, Springer;The Psychometric Society, vol. 41(3), pages 321-327, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kan, Kees-Jan & van der Maas, Han L.J. & Levine, Stephen Z., 2019. "Extending psychometric network analysis: Empirical evidence against g in favor of mutualism?," Intelligence, Elsevier, vol. 73(C), pages 52-62.
    2. Yuki Nozaki & Alicia Puente-Martínez & Moïra Mikolajczak, 2019. "Evaluating the higher-order structure of the Profile of Emotional Competence (PEC): Confirmatory factor analysis and Bayesian structural equation modeling," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-17, November.
    3. Boris Forthmann & Mark A. Runco, 2020. "An Empirical Test of the Inter-Relationships between Various Bibliometric Creative Scholarship Indicators," Publications, MDPI, vol. 8(2), pages 1-16, June.
    4. Colom, Roberto & García, Luis F. & Shih, Pei Chun & Abad, Francisco J., 2023. "Generational intelligence tests score changes in Spain: Are we asking the right question?," Intelligence, Elsevier, vol. 99(C).
    5. Wafa Mohammed Aldighrir, 2024. "Development and validation of the educational leadership scale for mental health providers: A network analysis approach," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    6. Hudson Golino & Alexander P. Christensen & Robert Moulder & Seohyun Kim & Steven M. Boker, 2022. "Modeling Latent Topics in Social Media using Dynamic Exploratory Graph Analysis: The Case of the Right-wing and Left-wing Trolls in the 2016 US Elections," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 156-187, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaitun Mohd Saman & Ab Hamid Siti-Azrin & Azizah Othman & Yee Cheng Kueh, 2021. "The Validity and Reliability of the Malay Version of the Cyberbullying Scale among Secondary School Adolescents in Malaysia," IJERPH, MDPI, vol. 18(21), pages 1-12, November.
    2. Boris Forthmann & Philipp Doebler & Rüdiger Mutz, 2024. "Why summing up bibliometric indicators does not justify a composite indicator," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(12), pages 7475-7499, December.
    3. Carlos Miguel Lemos & Ross Joseph Gore & Ivan Puga-Gonzalez & F LeRon Shults, 2019. "Dimensionality and factorial invariance of religiosity among Christians and the religiously unaffiliated: A cross-cultural analysis based on the International Social Survey Programme," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-36, May.
    4. Attanasio, Orazio & Blundell, Richard & Conti, Gabriella & Mason, Giacomo, 2020. "Inequality in socio-emotional skills: A cross-cohort comparison," Journal of Public Economics, Elsevier, vol. 191(C).
    5. Simon Foster & Meichun Mohler-Kuo, 2020. "The proportion of non-depressed subjects in a study sample strongly affects the results of psychometric analyses of depression symptoms," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-13, July.
    6. W. Holmes Finch, 2024. "Comparison of Methods for Addressing Outliers in Exploratory Factor Analysis and Impact on Accuracy of Determining the Number of Factors," Stats, MDPI, vol. 7(3), pages 1-21, August.
    7. Artür Manukyan & Erhan Çene & Ahmet Sedef & Ibrahim Demir, 2014. "Dandelion plot: a method for the visualization of R-mode exploratory factor analyses," Computational Statistics, Springer, vol. 29(6), pages 1769-1791, December.
    8. Hudson F Golino & Sacha Epskamp, 2017. "Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-26, June.
    9. Agyeman, Stephen & Cheng, Lin, 2020. "Analysis of barriers to perceived service quality in Ghana: Students’ perspectives on bus mobility attributes," Transport Policy, Elsevier, vol. 99(C), pages 63-85.
    10. Nichole Fairbrother & Fanie Collardeau & Arianne Albert & Kathrin Stoll, 2022. "Screening for Perinatal Anxiety Using the Childbirth Fear Questionnaire: A New Measure of Fear of Childbirth," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    11. Nicola Magnavita & Carlo Chiorri, 2022. "Development and Validation of a New Measure of Work Annoyance Using a Psychometric Network Approach," IJERPH, MDPI, vol. 19(15), pages 1-25, July.
    12. Lau Lilleholt & Ingo Zettler & Cornelia Betsch & Robert Böhm, 2023. "Development and validation of the pandemic fatigue scale," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    13. Peres-Neto, Pedro R. & Jackson, Donald A. & Somers, Keith M., 2005. "How many principal components? stopping rules for determining the number of non-trivial axes revisited," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 974-997, June.
    14. Orazio Attanasio & Sarah Cattan & Emla Fitzsimons & Costas Meghir & Marta Rubio-Codina, 2020. "Estimating the Production Function for Human Capital: Results from a Randomized Controlled Trial in Colombia," American Economic Review, American Economic Association, vol. 110(1), pages 48-85, January.
    15. Fernando Bucheli, 2021. "Before Entering Adulthood: Developing an Index of Capabilities for Young Adults in Bogota," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 16(3), pages 965-1002, June.
    16. Yoo, Sun-Young & Vonk, M. Elizabeth, 2012. "The development and initial validation of the Immigrant Parental Stress Inventory (IPSI) in a sample of Korean immigrant parents," Children and Youth Services Review, Elsevier, vol. 34(5), pages 989-998.
    17. Attanasio, Orazio & Cattan, Sarah & Fitzsimons, Emla & Meghir, Costas & Rubio-Codina, Marta, 2015. "Estimating the Production Function for Human Capital: Results from a Randomized Control Trial in Colombia," IZA Discussion Papers 8856, Institute of Labor Economics (IZA).
    18. repec:plo:pone00:0012412 is not listed on IDEAS
    19. Hauck, Jana & Suess-Reyes, Julia & Beck, Susanne & Prügl, Reinhard & Frank, Hermann, 2016. "Measuring socioemotional wealth in family-owned and -managed firms: A validation and short form of the FIBER Scale," Journal of Family Business Strategy, Elsevier, vol. 7(3), pages 133-148.
    20. Collison, Katherine L. & Miller, Joshua D. & Gaughan, Eric T. & Widiger, Thomas A. & Lynam, Donald R., 2016. "Development and validation of the super-short form of the Elemental Psychopathy Assessment," Journal of Criminal Justice, Elsevier, vol. 47(C), pages 143-150.
    21. Francisco J. Conejo & Lawrence F. Cunningham & Clifford E. Young, 2020. "Revisiting the Brand Luxury Index: new empirical evidence and future directions," Journal of Brand Management, Palgrave Macmillan, vol. 27(1), pages 108-122, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intell:v:62:y:2017:i:c:p:54-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.