IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v90y2020icp35-45.html
   My bibliography  Save this article

On the Type I multivariate zero-truncated hurdle model with applications in health insurance

Author

Listed:
  • Zhang, Pengcheng
  • Calderin, Enrique
  • Li, Shuanming
  • Wu, Xueyuan

Abstract

In the general insurance modeling literature, there has been a lot of work based on univariate zero-truncated models, but little has been done in the multivariate zero-truncation cases, for instance a line of insurance business with various classes of policies. There are three types of zero-truncation in the multivariate setting: only records with all zeros are missing, zero counts for one or some classes are missing, or zeros are completely missing for all classes. In this paper, we focus on the first case, the so-called Type I zero-truncation, and a new multivariate zero-truncated hurdle model is developed to study it. The key idea of developing such a model is to identify a stochastic representation for the underlying random variables, which enables us to use the EM algorithm to simplify the estimation procedure. This model is used to analyze a health insurance claims dataset that contains claim counts from different categories of claims without common zero observations.

Suggested Citation

  • Zhang, Pengcheng & Calderin, Enrique & Li, Shuanming & Wu, Xueyuan, 2020. "On the Type I multivariate zero-truncated hurdle model with applications in health insurance," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 35-45.
  • Handle: RePEc:eee:insuma:v:90:y:2020:i:c:p:35-45
    DOI: 10.1016/j.insmatheco.2019.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668719304068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2019.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Cameron,A. Colin & Trivedi,Pravin K., 2013. "Regression Analysis of Count Data," Cambridge Books, Cambridge University Press, number 9781107667273, Enero-Abr.
    2. Violetta Piperigou & H. Papageorgiou, 2003. "On truncated bivariate discrete distributions: A unified treatment," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 58(3), pages 221-233, December.
    3. Karlis, Dimitris, 2005. "EM Algorithm for Mixed Poisson and Other Discrete Distributions," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 3-24, May.
    4. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    5. Jean-Philippe Boucher & Michel Denuit & Montserrat Guillén, 2007. "Risk Classification for Claim Counts," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 110-131.
    6. Ch. Charalambides, 1984. "Minimum variance unbiased estimation for the zero class truncated bivariate poisson and logarithmic series distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 31(1), pages 115-123, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Yanxi & Li, Jiahong & Gao, Guangyuan, 2025. "Insurance loss modeling with gradient tree-boosted mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 121(C), pages 45-62.
    2. Minwoo Kim & Himchan Jeong & Dipak Dey, 2022. "Approximation of Zero-Inflated Poisson Credibility Premium via Variational Bayes Approach," Risks, MDPI, vol. 10(3), pages 1-11, March.
    3. Emilio Gómez-Déniz & Enrique Calderín-Ojeda, 2021. "A Priori Ratemaking Selection Using Multivariate Regression Models Allowing Different Coverages in Auto Insurance," Risks, MDPI, vol. 9(7), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihaela COVRIG & Dumitru BADEA, 2017. "Some Generalized Linear Models for the Estimation of the Mean Frequency of Claims in Motor Insurance," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(4), pages 91-107.
    2. Mihaela Covrig & Iulian Mircea & Gheorghita Zbaganu & Alexandru Coser & Alexandru Tindeche, 2015. "Using R In Generalized Linear Models," Romanian Statistical Review, Romanian Statistical Review, vol. 63(3), pages 33-45, September.
    3. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    4. Montserrat Guillen & Ana M. Pérez-Marín & Mercedes Ayuso & Jens Perch Nielsen, 2018. "“Exposure to risk increases the excess of zero accident claims frequency in automobile insurance”," IREA Working Papers 201810, University of Barcelona, Research Institute of Applied Economics, revised May 2018.
    5. Joan Costa-i-Font & Sergi Jimenez-Martin & Cristina Vilaplana, 2016. "Does Long-Term Care Subsidisation Reduce Hospital Admissions?," CESifo Working Paper Series 6078, CESifo.
    6. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    7. J. M. C. Santos Silva & Silvana Tenreyro, 2022. "The Log of Gravity at 15," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 21(3), pages 423-437, September.
    8. Deborah Kanda & Jingjing Yin & Xinyan Zhang & Hani Samawi, 2025. "Efficient regression analyses with zero-augmented models based on ranking," Computational Statistics, Springer, vol. 40(2), pages 601-632, February.
    9. Candelon, Bertrand & Joëts, Marc & Mignon, Valérie, 2024. "What makes econometric ideas popular: The role of connectivity," Research Policy, Elsevier, vol. 53(7).
    10. Chiara Bocci & Laura Grassini & Emilia Rocco, 2021. "A multiple inflated negative binomial hurdle regression model: analysis of the Italians’ tourism behaviour during the Great Recession," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1109-1133, October.
    11. Costa-Font, Joan & Jimenez-Martin, Sergi & Vilaplana, Cristina, 2018. "Does long-term care subsidization reduce hospital admissions and utilization?," Journal of Health Economics, Elsevier, vol. 58(C), pages 43-66.
    12. Dongyang Yang & Wei Xu, 2023. "Estimation of Mediation Effect on Zero-Inflated Microbiome Mediators," Mathematics, MDPI, vol. 11(13), pages 1-16, June.
    13. Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
    14. Nan-Ting Liu & Feng-Chang Lin & Yu-Shan Shih, 2020. "Count regression trees," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 5-27, March.
    15. Jiang, Yuan & House, Lisa A., 2017. "Comparison of the Performance of Count Data Models under Different Zero-Inflation Scenarios Using Simulation Studies," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258342, Agricultural and Applied Economics Association.
    16. Montserrat Guillen & Jens Perch Nielsen & Mercedes Ayuso & Ana M. Pérez‐Marín, 2019. "The Use of Telematics Devices to Improve Automobile Insurance Rates," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 662-672, March.
    17. José M. R. Murteira & Mário A. G. Augusto, 2017. "Hurdle models of repayment behaviour in personal loan contracts," Empirical Economics, Springer, vol. 53(2), pages 641-667, September.
    18. Yixuan Zou & Jan Hannig & Derek S. Young, 2021. "Generalized fiducial inference on the mean of zero-inflated Poisson and Poisson hurdle models," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-15, December.
    19. Gregori Baetschmann & Rainer Winkelmann, 2014. "A dynamic hurdle model for zero-inflated count data: with an application to health care utilization," ECON - Working Papers 151, Department of Economics - University of Zurich.
    20. Jean‐Philippe Boucher & Michel Denuit & Montserrat Guillen, 2009. "Number of Accidents or Number of Claims? An Approach with Zero‐Inflated Poisson Models for Panel Data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 821-846, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:90:y:2020:i:c:p:35-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.