IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v79y2018icp43-56.html
   My bibliography  Save this article

Optimal surrender of guaranteed minimum maturity benefits under stochastic volatility and interest rates

Author

Listed:
  • Kang, Boda
  • Ziveyi, Jonathan

Abstract

In this paper we analyse how the policyholders’surrender behaviour is influenced by changes in various sources of risk impacting a variable annuity (VA) contract embedded with a guaranteed minimum maturity benefit rider that can be surrendered anytime prior to maturity. We model the underlying mutual fund dynamics by combining a Heston (1993) stochastic volatility model together with a Hull and White (1990) stochastic interest rate process. The model is able to capture the smile/skew often observed on equity option markets (Grzelak and Oosterlee 2011) as well as the influence of the interest rates on the early surrender decisions as noted from our analysis. The annuity provider charges management fees which are proportional to the level of the mutual fund as a way of funding the VA contract. To determine the optimal surrender decisions, we present the problem as a 4-dimensional free-boundary partial differential equation (PDE) which is then solved efficiently by the method of lines (MOL) approach. The MOL algorithm facilitates simultaneous computation of the prices, fair management fees, optimal surrender boundaries and hedge ratios of the variable annuity contract as part of the solution at no additional computational cost. A comprehensive analysis on the impact of various risk factors in influencing the policyholder’s surrender behaviour is carried out, highlighting the significance of both stochastic volatility and interest rate parameters in influencing the policyholder’s surrender behaviour. With the aid of the hedge ratios obtained from the MOL, we construct an effective dynamic hedging strategy to mitigate the provider’s risk and compare different hedging performances when the policyholders’ surrender behaviour is either optimal or sub-optimal.

Suggested Citation

  • Kang, Boda & Ziveyi, Jonathan, 2018. "Optimal surrender of guaranteed minimum maturity benefits under stochastic volatility and interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 43-56.
  • Handle: RePEc:eee:insuma:v:79:y:2018:i:c:p:43-56
    DOI: 10.1016/j.insmatheco.2017.12.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668717300562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2017.12.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ryan Donnelly & Sebastian Jaimungal & Dmitri H. Rubisov, 2014. "Valuing guaranteed withdrawal benefits with stochastic interest rates and volatility," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 369-382, February.
    2. Eckhard Platen & Renata Rendek, 2007. "Empirical Evidence on Student-t Log-Returns of Diversified World Stock Indices," Research Paper Series 194, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Ignatieva, Katja & Song, Andrew & Ziveyi, Jonathan, 2016. "Pricing and hedging of guaranteed minimum benefits under regime-switching and stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 286-300.
    4. Horneff, Vanya & Maurer, Raimond & Mitchell, Olivia S. & Rogalla, Ralph, 2015. "Optimal life cycle portfolio choice with variable annuities offering liquidity and investment downside protection," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 91-107.
    5. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    6. Costabile, Massimo & Massabó, Ivar & Russo, Emilio, 2008. "A binomial model for valuing equity-linked policies embedding surrender options," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 873-886, June.
    7. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    8. Gunter H Meyer, 2015. "The Time-Discrete Method of Lines for Options and Bonds:A PDE Approach," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9292, August.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Shen, Yang & Sherris, Michael & Ziveyi, Jonathan, 2016. "Valuation of guaranteed minimum maturity benefits in variable annuities with surrender options," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 127-137.
    11. Roberto Dieci & Xue-Zhong He & Cars Hommes (ed.), 2014. "Nonlinear Economic Dynamics and Financial Modelling," Springer Books, Springer, edition 127, number 978-3-319-07470-2, February.
    12. Shen, Weixi & Xu, Huiping, 2005. "The valuation of unit-linked policies with or without surrender options," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 79-92, February.
    13. Bernard, Carole & MacKay, Anne & Muehlbeyer, Max, 2014. "Optimal surrender policy for variable annuity guarantees," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 116-128.
    14. van Haastrecht, Alexander & Plat, Richard & Pelsser, Antoon, 2010. "Valuation of guaranteed annuity options using a stochastic volatility model for equity prices," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 266-277, December.
    15. Bauer, Daniel & Kling, Alexander & Russ, Jochen, 2008. "A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities 1," ASTIN Bulletin, Cambridge University Press, vol. 38(2), pages 621-651, November.
    16. Carl Chiarella & Boda Kang & Gunter H. Meyer & Andrew Ziogas, 2009. "The Evaluation Of American Option Prices Under Stochastic Volatility And Jump-Diffusion Dynamics Using The Method Of Lines," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-425.
    17. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    18. Bernard, Carole & Kwak, Minsuk, 2016. "Semi-static hedging of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 173-186.
    19. Abdou Kélani & François Quittard-Pinon, 2017. "Pricing and Hedging Variable Annuities in a Lévy Market: A Risk Management Perspective," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(1), pages 209-238, March.
    20. Grosen, Anders & Lochte Jorgensen, Peter, 2000. "Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options, and bonus policies," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 37-57, February.
    21. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    22. T. F. Coleman & Y. Kim & Y. Li & M. Patron, 2007. "Robustly Hedging Variable Annuities With Guarantees Under Jump and Volatility Risks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(2), pages 347-376, June.
    23. Rolf Poulsen & Klaus Reiner Schenk-Hoppe & Christian-Oliver Ewald, 2009. "Risk minimization in stochastic volatility models: model risk and empirical performance," Quantitative Finance, Taylor & Francis Journals, vol. 9(6), pages 693-704.
    24. Coleman, Thomas F. & Li, Yuying & Patron, Maria-Cristina, 2006. "Hedging guarantees in variable annuities under both equity and interest rate risks," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 215-228, April.
    25. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    26. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    27. S. D. Jacka, 1991. "Optimal Stopping and the American Put," Mathematical Finance, Wiley Blackwell, vol. 1(2), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenyu Cui & Anne MacKay & Marie-Claude Vachon, 2022. "Analysis of VIX-linked fee incentives in variable annuities via continuous-time Markov chain approximation," Papers 2207.14793, arXiv.org.
    2. Antonio L. Martire & Emilio Russo & Alessandro Staino, 2023. "Surrender and path-dependent guarantees in variable annuities: integral equation solutions and benchmark methods," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 177-220, June.
    3. Jennifer Alonso Garcia & Michael Sherris & Samuel Thirurajah & Jonathan Ziveyi, 2020. "Taxation and policyholder behavior: the case of guaranteed minimum accumulation benefits," ULB Institutional Repository 2013/307889, ULB -- Universite Libre de Bruxelles.
    4. Claudio Fontana & Francesco Rotondi, 2022. "Valuation of general GMWB annuities in a low interest rate environment," Papers 2208.10183, arXiv.org, revised Aug 2023.
    5. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    6. Belssing Taruvinga, 2019. "Solving Selected Problems on American Option Pricing with the Method of Lines," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2019, January-A.
    7. Anne Mackay & Marie-Claude Vachon, 2023. "On an Optimal Stopping Problem with a Discontinuous Reward," Papers 2311.03538, arXiv.org, revised Nov 2023.
    8. Wenguang Yu & Yaodi Yong & Guofeng Guan & Yujuan Huang & Wen Su & Chaoran Cui, 2019. "Valuing Guaranteed Minimum Death Benefits by Cosine Series Expansion," Mathematics, MDPI, vol. 7(9), pages 1-15, September.
    9. Boda Kang & Christina Nikitopoulos Sklibosios & Erik Schlogl & Blessing Taruvinga, 2019. "The Impact of Jumps on American Option Pricing: The S&P 100 Options Case," Research Paper Series 397, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Anna Rita Bacinello & Ivan Zoccolan, 2019. "Variable annuities with a threshold fee: valuation, numerical implementation and comparative static analysis," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 21-49, June.
    11. Fontana, Claudio & Rotondi, Francesco, 2023. "Valuation of general GMWB annuities in a low interest rate environment," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 142-167.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    4. Thorsten Moenig, 2021. "Efficient valuation of variable annuity portfolios with dynamic programming," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 1023-1055, December.
    5. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    6. Jennifer Alonso Garcia & Michael Sherris & Samuel Thirurajah & Jonathan Ziveyi, 2020. "Taxation and policyholder behavior: the case of guaranteed minimum accumulation benefits," ULB Institutional Repository 2013/307889, ULB -- Universite Libre de Bruxelles.
    7. Shen, Yang & Sherris, Michael & Ziveyi, Jonathan, 2016. "Valuation of guaranteed minimum maturity benefits in variable annuities with surrender options," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 127-137.
    8. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    9. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    10. repec:uts:finphd:41 is not listed on IDEAS
    11. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    12. Qian Li & Li Wang, 2023. "Option pricing under jump diffusion model," Papers 2305.10678, arXiv.org.
    13. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    14. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, July-Dece.
    15. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    16. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    17. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, August.
    18. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, March.
    19. Dai, Tian-Shyr & Yang, Sharon S. & Liu, Liang-Chih, 2015. "Pricing guaranteed minimum/lifetime withdrawal benefits with various provisions under investment, interest rate and mortality risks," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 364-379.
    20. Bo, Lijun, 2011. "Exponential change of measure applied to term structures of interest rates and exchange rates," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 216-225, September.
    21. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:79:y:2018:i:c:p:43-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.