IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Robustly Hedging Variable Annuities With Guarantees Under Jump and Volatility Risks

  • T. F. Coleman
  • Y. Kim
  • Y. Li
  • M. Patron
Registered author(s):

    Recent variable annuities offer participation in the equity market and attractive protection against downside movements. Accurately quantifying this additional equity market risk and robustly hedging options embedded in the guarantees of variable annuities are new challenges for insurance companies. Due to sensitivities of the benefits to tails of the account value distribution, a simple Black-Scholes model is inadequate in preventing excessive liabilities. A model which realistically describes the real world price dynamics over a long time horizon is essential for the risk management of the variable annuities. In this article, both jump risk and volatility risk are considered for risk management of lookback options embedded in guarantees with a ratchet feature. We evaluate relative performances of delta hedging and dynamic discrete risk minimization hedging strategies. Using the underlying as the hedging instrument, we show that, under a Black-Scholes model, local risk minimization hedging can be significantly better than delta hedging. In addition, we compare risk minimization hedging using the underlying with that of using standard options. We demonstrate that, under a Merton's jump diffusion model, hedging using standard options is superior to hedging using the underlying in terms of the risk reduction. Finally, we consider a market model for volatility risks in which the at-the-money implied volatility is a state variable. We compute risk minimization hedging by modeling at-the-money Black-Scholes implied volatility explicitly; the hedging effectiveness is evaluated, however, under a joint model for the underlying price and implied volatility. Our computational results suggest that, when implied volatility risk is suitably modeled, risk minimization hedging using standard options, compared to hedging using the underlying, can potentially be more effective in risk reduction under both jump and volatility risks. Copyright The Journal of Risk and Insurance, 2007.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by The American Risk and Insurance Association in its journal Journal of Risk & Insurance.

    Volume (Year): 74 (2007)
    Issue (Month): 2 ()
    Pages: 347-376

    in new window

    Handle: RePEc:bla:jrinsu:v:74:y:2007:i:2:p:347-376
    Contact details of provider: Web page:

    More information through EDIRC

    Order Information: Web:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Fabio Mercurio & Ton Vorst, 1996. "Option pricing with hedging at fixed trading dates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(2), pages 135-158.
    2. Schönbucher, Philpp J., . "A Market Model for Stochastic Implied Volatility," Discussion Paper Serie B 453, University of Bonn, Germany, revised May 1999.
    3. Fengler, Matthias R. & Härdle, Wolfgang K. & Villa, Christophe, 2001. "The dynamics of implied volatilities: A common principal components approach," SFB 373 Discussion Papers 2001,38, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    4. Pelsser, Antoon, 2003. "Pricing and hedging guaranteed annuity options via static option replication," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 283-296, October.
    5. Knut Aase & Svein-Arne Persson, 1996. "Valuation of the Minimum Guaranteed Return Embedded in Life Insurance Products," Center for Financial Institutions Working Papers 96-20, Wharton School Center for Financial Institutions, University of Pennsylvania.
    6. Brennan, Michael J. & Schwartz, Eduardo S., 1976. "The pricing of equity-linked life insurance policies with an asset value guarantee," Journal of Financial Economics, Elsevier, vol. 3(3), pages 195-213, June.
    7. Boyle, Phelim P. & Hardy, Mary R., 1997. "Reserving for maturity guarantees: Two approaches," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 113-127, November.
    8. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
    9. David Heath & Eckhard Platen & Martin Schweizer, 2001. "A Comparison of Two Quadratic Approaches to Hedging in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 385-413.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:bla:jrinsu:v:74:y:2007:i:2:p:347-376. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

    or (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.