IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v14y2011i04ns021902491100670x.html
   My bibliography  Save this article

Hedging European Derivatives With The Polynomial Variance Swap Under Uncertain Volatility Environments

Author

Listed:
  • AKIHIKO TAKAHASHI

    (Graduate School of Economics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan)

  • YUKIHIRO TSUZUKI

    (Mizuho-DL Financial Technology Co., Ltd., 1-3, Otemachi 1-chome, Chiyoda-ku, Tokyo 100-0004, Japan)

  • AKIRA YAMAZAKI

    (Graduate School of Economics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan;
    Mizuho-DL Financial Technology Co., Ltd., 1-3, Otemachi 1-chome, Chiyoda-ku, Tokyo 100-0004, Japan)

Abstract

This paper proposes a new hedging scheme of European derivatives under uncertain volatility environments, in which a weighted variance swap called the polynomial variance swap is added to the Black-Scholes delta hedging for managing exposure to volatility risk. In general, under these environments one cannot hedge the derivatives completely by using dynamic trading of only an underlying asset owing to volatility risk. Then, for hedging uncertain volatility risk, we design the polynomial variance, which can be dependent on the level of the underlying asset price. It is shown that the polynomial variance swap is not perfect, but more efficient as a hedging tool for the volatility exposure than the standard variance swap. In addition, our hedging scheme has a preferable property that any information on the volatility process of the underlying asset price is unnecessary. To demonstrate robustness of our scheme, we implement Monte Carlo simulation tests with three different settings, and compare the hedging performance of our scheme with that of standard dynamic hedging schemes such as the minimum-variance hedging. As a result, it is found that our scheme outperforms the others in all test cases. Moreover, it is noteworthy that the scheme proposed in this paper continues to be robust against model risks.

Suggested Citation

  • Akihiko Takahashi & Yukihiro Tsuzuki & Akira Yamazaki, 2011. "Hedging European Derivatives With The Polynomial Variance Swap Under Uncertain Volatility Environments," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(04), pages 485-505.
  • Handle: RePEc:wsi:ijtafx:v:14:y:2011:i:04:n:s021902491100670x
    DOI: 10.1142/S021902491100670X
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S021902491100670X
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S021902491100670X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Heath & Eckhard Platen & Martin Schweizer, 2001. "Numerical Comparison of Local Risk-Minimisation & Mean-Variance Hedging," Published Paper Series 2001-3, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    2. Jason Fink, 2003. "An examination of the effectiveness of static hedging in the presence of stochastic volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(9), pages 859-890, September.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Peter Friz & Jim Gatheral, 2005. "Valuation of volatility derivatives as an inverse problem," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 531-542.
    6. Peter Carr & Hélyette Geman & Dilip Madan & Marc Yor, 2005. "Pricing options on realized variance," Finance and Stochastics, Springer, vol. 9(4), pages 453-475, October.
    7. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    8. David Heath & Eckhard Platen & Martin Schweizer, 2001. "A Comparison of Two Quadratic Approaches to Hedging in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 385-413, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akira Yamazaki, 2022. "Recovering subjective probability distributions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1234-1263, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akihiko Takahashi & Yukihiro Tsuzuki & Akira Yamazaki, 2009. "Hedging European Derivatives with the Polynomial Variance Swap under Uncertain Volatility Environments," CIRJE F-Series CIRJE-F-653, CIRJE, Faculty of Economics, University of Tokyo.
    2. Akihiko Takahashi & Yukihiro Tsuzuki & Akira Yamazaki, 2009. "Hedging European Derivatives with the Polynomial Variance Swap under Uncertain Volatility Environments," CARF F-Series CARF-F-161, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. Akihiko Takahashi & Yukihiro Tsuzuki & Akira Yamazaki, 2010. "Hedging European Derivatives with the Polynomial Variance Swap under Uncertain Volatility Environments," CARF F-Series CARF-F-238, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    4. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    5. Carol Alexander & Leonardo M. Nogueira, 2006. "Hedging Options with Scale-Invariant Models," ICMA Centre Discussion Papers in Finance icma-dp2006-03, Henley Business School, University of Reading.
    6. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, January.
    7. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Pricing and hedging contingent claims using variance and higher order moment swaps," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 531-550, April.
    8. Nappo, Giovanna & Marchetti, Fabio Massimo & Vagnani, Gianluca, 2023. "Traders’ heterogeneous beliefs about stock volatility and the implied volatility skew in financial options markets," Finance Research Letters, Elsevier, vol. 53(C).
    9. Carol Alexander & Leonardo Nogueira, 2007. "Model-free price hedge ratios for homogeneous claims on tradable assets," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 473-479.
    10. M. R. Grasselli & T. R. Hurd, 2007. "Indifference Pricing and Hedging for Volatility Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 303-317.
    11. Windcliff, H. & Vetzal, K. R. & Forsyth, P. A. & Verma, A. & Coleman, T. F., 2003. "An object-oriented framework for valuing shout options on high-performance computer architectures," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1133-1161, April.
    12. Sai Hung Marten Ting & Christian-Oliver Ewald, 2013. "On the performance of asymptotic locally risk minimising hedges in the Heston stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 939-954, May.
    13. San‐Lin Chung & Yi‐Ta Huang & Pai‐Ta Shih & Jr‐Yan Wang, 2019. "Semistatic hedging and pricing American floating strike lookback options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(4), pages 418-434, April.
    14. Jan Maruhn & Morten Nalholm & Matthias Fengler, 2011. "Static hedges for reverse barrier options with robustness against skew risk: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 711-727.
    15. Carlos Fuertes & Andrew Papanicolaou, 2012. "Implied Filtering Densities on Volatility's Hidden State," Papers 1203.6631, arXiv.org, revised Mar 2017.
    16. Chauveau, Thierry & Gatfaoui, Hayette, 2002. "Systematic risk and idiosyncratic risk: a useful distinction for valuing European options," Journal of Multinational Financial Management, Elsevier, vol. 12(4-5), pages 305-321.
    17. Ernst Eberlein & Dilip Madan, 2009. "Sato processes and the valuation of structured products," Quantitative Finance, Taylor & Francis Journals, vol. 9(1), pages 27-42.
    18. T. F. Coleman & Y. Kim & Y. Li & M. Patron, 2007. "Robustly Hedging Variable Annuities With Guarantees Under Jump and Volatility Risks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(2), pages 347-376, June.
    19. Ke Nian & Thomas F. Coleman & Yuying Li, 2018. "Learning minimum variance discrete hedging directly from the market," Quantitative Finance, Taylor & Francis Journals, vol. 18(7), pages 1115-1128, July.
    20. Maciej Augustyniak & Frédéric Godin & Clarence Simard, 2017. "Assessing the effectiveness of local and global quadratic hedging under GARCH models," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1305-1318, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:14:y:2011:i:04:n:s021902491100670x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.