IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v46y2023i1d10.1007_s10203-022-00383-w.html
   My bibliography  Save this article

Surrender and path-dependent guarantees in variable annuities: integral equation solutions and benchmark methods

Author

Listed:
  • Antonio L. Martire

    (Rome Tre University)

  • Emilio Russo

    (University of Calabria)

  • Alessandro Staino

    (University of Calabria)

Abstract

We investigate the evaluation problem of variable annuities by considering guaranteed minimum maturity benefits, with constant or path-dependent guarantees of up-and-out barrier and lookback type, and guaranteed minimum accumulation benefit riders, with different forms of the surrender amount. We propose to solve the non-standard Volterra integral equations associated with the policy valuations through a randomized trapezoidal quadrature rule combined with an interpolation technique. Such a rule improves the converge rate with respect to the classical trapezoidal quadrature, while the interpolation technique allows us to obtain an efficient algorithm that produces a very accurate approximation of the early exercise boundary. The method accuracy is assessed by constructing two benchmarks: The first one, developed in a lattice framework, is characterized by a novel algorithm for the lookback path-dependent guarantee obtained thanks to the lattice convergence properties, while the application is straightforward in the other cases; the second one is based on the least-squares Monte Carlo simulations.

Suggested Citation

  • Antonio L. Martire & Emilio Russo & Alessandro Staino, 2023. "Surrender and path-dependent guarantees in variable annuities: integral equation solutions and benchmark methods," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 177-220, June.
  • Handle: RePEc:spr:decfin:v:46:y:2023:i:1:d:10.1007_s10203-022-00383-w
    DOI: 10.1007/s10203-022-00383-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-022-00383-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-022-00383-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeon, Junkee & Kwak, Minsuk, 2018. "Optimal surrender strategies and valuations of path-dependent guarantees in variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 93-109.
    2. Jeffrey R. Brown & James M. Poterba, 2006. "Household Ownership of Variable Annuities," NBER Chapters, in: Tax Policy and the Economy, Volume 20, pages 163-191, National Bureau of Economic Research, Inc.
    3. Jing-Zhi Huang & Marti G. Subrahmanyam & G. George Yu, 1999. "Pricing And Hedging American Options: A Recursive Integration Method," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar, chapter 8, pages 219-239, World Scientific Publishing Co. Pte. Ltd..
    4. Milevsky, Moshe A. & Salisbury, Thomas S., 2006. "Financial valuation of guaranteed minimum withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 21-38, February.
    5. S. D. Jacka, 1991. "Optimal Stopping and the American Put," Mathematical Finance, Wiley Blackwell, vol. 1(2), pages 1-14, April.
    6. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    7. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    8. Shen, Yang & Sherris, Michael & Ziveyi, Jonathan, 2016. "Valuation of guaranteed minimum maturity benefits in variable annuities with surrender options," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 127-137.
    9. Bernard, Carole & MacKay, Anne & Muehlbeyer, Max, 2014. "Optimal surrender policy for variable annuity guarantees," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 116-128.
    10. Kang, Boda & Ziveyi, Jonathan, 2018. "Optimal surrender of guaranteed minimum maturity benefits under stochastic volatility and interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 43-56.
    11. Brennan, Michael J. & Schwartz, Eduardo S., 1976. "The pricing of equity-linked life insurance policies with an asset value guarantee," Journal of Financial Economics, Elsevier, vol. 3(3), pages 195-213, June.
    12. Kim, In Joon, 1990. "The Analytic Valuation of American Options," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 547-572.
    13. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    2. Junkee Jeon & Geonwoo Kim, 2022. "Analytic Valuation Formula for American Strangle Option in the Mean-Reversion Environment," Mathematics, MDPI, vol. 10(15), pages 1-19, July.
    3. Laminou Abdou, Souleymane & Moraux, Franck, 2016. "Pricing and hedging American and hybrid strangles with finite maturity," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 112-125.
    4. Barone-Adesi, Giovanni, 2005. "The saga of the American put," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2909-2918, November.
    5. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    6. Minqiang Li, 2010. "Analytical approximations for the critical stock prices of American options: a performance comparison," Review of Derivatives Research, Springer, vol. 13(1), pages 75-99, April.
    7. Doobae Jun & Hyejin Ku, 2013. "Valuation of American partial barrier options," Review of Derivatives Research, Springer, vol. 16(2), pages 167-191, July.
    8. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    9. Muthuraman, Kumar, 2008. "A moving boundary approach to American option pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3520-3537, November.
    10. Chockalingam, Arun & Muthuraman, Kumar, 2015. "An approximate moving boundary method for American option pricing," European Journal of Operational Research, Elsevier, vol. 240(2), pages 431-438.
    11. Ruas, João Pedro & Dias, José Carlos & Vidal Nunes, João Pedro, 2013. "Pricing and static hedging of American-style options under the jump to default extended CEV model," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4059-4072.
    12. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    13. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    14. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    15. Weiping Li & Su Chen, 2018. "The Early Exercise Premium In American Options By Using Nonparametric Regressions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-29, November.
    16. Zhenyu Cui & Anne MacKay & Marie-Claude Vachon, 2022. "Analysis of VIX-linked fee incentives in variable annuities via continuous-time Markov chain approximation," Papers 2207.14793, arXiv.org.
    17. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    18. Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.
    19. Ma, Jingtang & Yang, Wensheng & Cui, Zhenyu, 2021. "CTMC integral equation method for American options under stochastic local volatility models," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    20. Song-Ping Zhu & Nhat-Tan Le & Wen-Ting Chen & Xiaoping Lu, 2015. "Pricing Parisian down-and-in options," Papers 1511.01564, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:46:y:2023:i:1:d:10.1007_s10203-022-00383-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.