IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v72y2017icp83-94.html
   My bibliography  Save this article

The valuation of life contingencies: A symmetrical triangular fuzzy approximation

Author

Listed:
  • de Andrés-Sánchez, Jorge
  • González-Vila Puchades, Laura

Abstract

This paper extends the framework for the valuation of life insurance policies and annuities by Andrés-Sánchez and González-Vila (2012, 2014) in two ways. First we allow various uncertain magnitudes to be estimated by means of fuzzy numbers. This applies not only to interest rates but also to the amounts to be paid out by the insurance company. Second, the use of symmetrical triangular fuzzy numbers allows us to obtain expressions for the pricing of life contingencies and their variability that are closely linked to standard financial and actuarial mathematics. Moreover, they are relatively straightforward to compute and understand from a standard actuarial point of view.

Suggested Citation

  • de Andrés-Sánchez, Jorge & González-Vila Puchades, Laura, 2017. "The valuation of life contingencies: A symmetrical triangular fuzzy approximation," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 83-94.
  • Handle: RePEc:eee:insuma:v:72:y:2017:i:c:p:83-94
    DOI: 10.1016/j.insmatheco.2016.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668716302311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2016.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heberle, Jochen & Thomas, Anne, 2014. "Combining chain-ladder claims reserving with fuzzy numbers," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 96-104.
    2. Lemaire, Jean, 1990. "Fuzzy Insurance," ASTIN Bulletin, Cambridge University Press, vol. 20(1), pages 33-55, April.
    3. Wolthuis, H. & Van Hoek, I., 1986. "Stochastic models for life contingencies," Insurance: Mathematics and Economics, Elsevier, vol. 5(3), pages 217-254, July.
    4. Huang, Tao & Zhao, Ruiqing & Tang, Wansheng, 2009. "Risk model with fuzzy random individual claim amount," European Journal of Operational Research, Elsevier, vol. 192(3), pages 879-890, February.
    5. Shapiro, Arnold F., 2009. "Fuzzy random variables," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 307-314, April.
    6. de Wit, G. W., 1982. "Underwriting and uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 1(4), pages 277-285, October.
    7. Shapiro, Arnold F., 2013. "Modeling future lifetime as a fuzzy random variable," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 864-870.
    8. Alegre, Antoni & Claramunt, M. Merce, 1995. "Allocation of solvency cost in group annuities: Actuarial principles and cooperative game theory," Insurance: Mathematics and Economics, Elsevier, vol. 17(1), pages 19-34, August.
    9. Zmeskal, Zdenek, 2005. "Value at risk methodology under soft conditions approach (fuzzy-stochastic approach)," European Journal of Operational Research, Elsevier, vol. 161(2), pages 337-347, March.
    10. Shapiro, Arnold F., 2004. "Fuzzy logic in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 399-424, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Kai & Qin, Zhongfeng, 2015. "A modified insurance risk process with uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 227-233.
    2. Pablo J. Villacorta & Laura González-Vila Puchades & Jorge de Andrés-Sánchez, 2021. "Fuzzy Markovian Bonus-Malus Systems in Non-Life Insurance," Mathematics, MDPI, vol. 9(4), pages 1-23, February.
    3. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    4. Koissi, Marie-Claire & Shapiro, Arnold F., 2006. "Fuzzy formulation of the Lee-Carter model for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 287-309, December.
    5. Daniela Ungureanu & Raluca Vernic, 2015. "On a fuzzy cash flow model with insurance applications," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 38(1), pages 39-54, April.
    6. Luukka, Pasi & Collan, Mikael, 2015. "New fuzzy insurance pricing method for giga-investment project insurance," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 22-29.
    7. Heberle, Jochen & Thomas, Anne, 2014. "Combining chain-ladder claims reserving with fuzzy numbers," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 96-104.
    8. Jelena Lukić & Mirjana Misita & Dragan D. Milanović & Ankica Borota-Tišma & Aleksandra Janković, 2022. "Determining the Risk Level in Client Analysis by Applying Fuzzy Logic in Insurance Sector," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    9. Lai, Li-Hua, 2008. "An evaluation of fuzzy transportation underwriting systematic risk," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(9), pages 1231-1237, November.
    10. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    11. Sadefo Kamdem, J. & Mbairadjim Moussa, A. & Terraza, M., 2012. "Fuzzy risk adjusted performance measures: Application to hedge funds," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 702-712.
    12. Shapiro, Arnold F., 2013. "Modeling future lifetime as a fuzzy random variable," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 864-870.
    13. A. Shibu & M. Reddy, 2014. "Optimal Design of Water Distribution Networks Considering Fuzzy Randomness of Demands Using Cross Entropy Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4075-4094, September.
    14. Rachida Hennani & Michel Terraza, 2012. "Value-at-Risk stressée chaotique d’un portefeuille bancaire," Working Papers 12-23, LAMETA, Universtiy of Montpellier, revised Sep 2012.
    15. Jorge De Andrés-Sánchez, 2024. "Calculating Insurance Claim Reserves with an Intuitionistic Fuzzy Chain-Ladder Method," Mathematics, MDPI, vol. 12(6), pages 1-24, March.
    16. Arnold Shapiro, 2013. "Fuzzy post-retirement financial concepts: an exploratory study," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 261-278, November.
    17. Berry-Stölzle, Thomas R. & Koissi, Marie-Claire & Shapiro, Arnold F., 2010. "Detecting fuzzy relationships in regression models: The case of insurer solvency surveillance in Germany," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 554-567, June.
    18. Apaydin, Aysen & Baser, Furkan, 2010. "Hybrid fuzzy least-squares regression analysis in claims reserving with geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 113-122, October.
    19. Tank, Fatih & Gebizlioglu, Omer L. & Apaydin, Aysen, 2006. "Determination of dependency parameter in joint distribution of dependent risks by fuzzy approach," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 189-194, February.
    20. Suijs, J.P.M. & De Waegenaere, A.M.B. & Borm, P.E.M., 1996. "Stochastic Cooperative Games in Insurance and Reinsurance," Discussion Paper 1996-53, Tilburg University, Center for Economic Research.

    More about this item

    Keywords

    Life contingency pricing; Fuzzy numbers; Expected interval and beta expected value of a fuzzy number; Fuzzy financial mathematics; Mathematical expectation and variance of a fuzzy random variable;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:72:y:2017:i:c:p:83-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.