IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v55y2014icp96-104.html
   My bibliography  Save this article

Combining chain-ladder claims reserving with fuzzy numbers

Author

Listed:
  • Heberle, Jochen
  • Thomas, Anne

Abstract

In this paper we extend the classical chain-ladder claims reserving method using fuzzy methods. Therefore, we derive new estimators for the claims development factors as well as new predictors for the ultimate claims. The advantage in using fuzzy numbers lies in the fact that the model uncertainty is directly included in and can be controlled by the “new” fuzzy claims development factors. We also provide an estimator for the uncertainty of the ultimate claims for single accident years and for aggregated accident years.

Suggested Citation

  • Heberle, Jochen & Thomas, Anne, 2014. "Combining chain-ladder claims reserving with fuzzy numbers," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 96-104.
  • Handle: RePEc:eee:insuma:v:55:y:2014:i:c:p:96-104
    DOI: 10.1016/j.insmatheco.2014.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668714000067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2014.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Apaydin, Aysen & Baser, Furkan, 2010. "Hybrid fuzzy least-squares regression analysis in claims reserving with geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 113-122, October.
    2. Peters, Gareth W. & Wüthrich, Mario V. & Shevchenko, Pavel V., 2010. "Chain ladder method: Bayesian bootstrap versus classical bootstrap," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 36-51, August.
    3. Mack, Thomas, 1993. "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 213-225, November.
    4. de Wit, G. W., 1982. "Underwriting and uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 1(4), pages 277-285, October.
    5. Gisler, Alois & Wüthrich, Mario V., 2008. "Credibility for the Chain Ladder Reserving Method," ASTIN Bulletin, Cambridge University Press, vol. 38(2), pages 565-600, November.
    6. Jorge De Andrés Sánchez & Antonio Terceño Gómez, 2003. "Applications of Fuzzy Regression in Actuarial Analysis," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(4), pages 665-699, December.
    7. Lemaire, Jean, 1990. "Fuzzy Insurance," ASTIN Bulletin, Cambridge University Press, vol. 20(1), pages 33-55, April.
    8. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    9. Gareth W. Peters & Mario V. Wuthrich & Pavel V. Shevchenko, 2010. "Chain ladder method: Bayesian bootstrap versus classical bootstrap," Papers 1004.2548, arXiv.org.
    10. Shapiro, Arnold F., 2004. "Fuzzy logic in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 399-424, October.
    11. Taylor, G. C. & Ashe, F. R., 1983. "Second moments of estimates of outstanding claims," Journal of Econometrics, Elsevier, vol. 23(1), pages 37-61, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pablo J. Villacorta & Laura González-Vila Puchades & Jorge de Andrés-Sánchez, 2021. "Fuzzy Markovian Bonus-Malus Systems in Non-Life Insurance," Mathematics, MDPI, vol. 9(4), pages 1-23, February.
    2. Jorge De Andrés-Sánchez, 2024. "Calculating Insurance Claim Reserves with an Intuitionistic Fuzzy Chain-Ladder Method," Mathematics, MDPI, vol. 12(6), pages 1-24, March.
    3. de Andrés-Sánchez, Jorge & González-Vila Puchades, Laura, 2017. "The valuation of life contingencies: A symmetrical triangular fuzzy approximation," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 83-94.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    2. Koissi, Marie-Claire & Shapiro, Arnold F., 2006. "Fuzzy formulation of the Lee-Carter model for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 287-309, December.
    3. Peters, Gareth W. & Dong, Alice X.D. & Kohn, Robert, 2014. "A copula based Bayesian approach for paid–incurred claims models for non-life insurance reserving," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 258-278.
    4. de Andrés-Sánchez, Jorge & González-Vila Puchades, Laura, 2017. "The valuation of life contingencies: A symmetrical triangular fuzzy approximation," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 83-94.
    5. Yao, Kai & Qin, Zhongfeng, 2015. "A modified insurance risk process with uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 227-233.
    6. Berry-Stölzle, Thomas R. & Koissi, Marie-Claire & Shapiro, Arnold F., 2010. "Detecting fuzzy relationships in regression models: The case of insurer solvency surveillance in Germany," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 554-567, June.
    7. Karthik Sriram & Peng Shi, 2021. "Stochastic loss reserving: A new perspective from a Dirichlet model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 195-230, March.
    8. Alessandro Ricotta & Edoardo Luini, 2019. "Bayesian Estimation of Structure Variables in the Collective Risk Model for Reserve Risk," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 9(2), pages 1-2.
    9. Apaydin, Aysen & Baser, Furkan, 2010. "Hybrid fuzzy least-squares regression analysis in claims reserving with geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 113-122, October.
    10. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Working Papers hal-02891046, HAL.
    11. Shapiro, Arnold F., 2004. "Fuzzy logic in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 399-424, October.
    12. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    13. Lai, Li-Hua, 2008. "An evaluation of fuzzy transportation underwriting systematic risk," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(9), pages 1231-1237, November.
    14. Xiaolin Luo & Pavel V. Shevchenko, 2012. "Bayesian Model Choice of Grouped t-Copula," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 1097-1119, December.
    15. Daniela Ungureanu & Raluca Vernic, 2015. "On a fuzzy cash flow model with insurance applications," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 38(1), pages 39-54, April.
    16. Luukka, Pasi & Collan, Mikael, 2015. "New fuzzy insurance pricing method for giga-investment project insurance," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 22-29.
    17. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    18. Steinmetz, Julia & Jentsch, Carsten, 2024. "Bootstrap consistency for the Mack bootstrap," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 83-121.
    19. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Post-Print hal-02891046, HAL.
    20. Boratyńska, Agata, 2017. "Robust Bayesian estimation and prediction of reserves in exponential model with quadratic variance function," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 135-140.

    More about this item

    Keywords

    Claims reserving; Chain-ladder model; Fuzzy numbers; Ultimate claims predictor; Fuzzy uncertainty;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:55:y:2014:i:c:p:96-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.