IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v27y2025i2d10.1007_s11009-025-10164-8.html
   My bibliography  Save this article

An Extension of Interval Probabilities using Modal Interval Theory and its Application to Non-life Insurance

Author

Listed:
  • Roman Adillon

    (Universitat de Barcelona)

  • Lambert Jorba

    (Universitat de Barcelona)

  • Maite Mármol

    (Universitat de Barcelona)

Abstract

In this paper we apply the modal interval theory to the actuarial field to study the analysis and control of solvency in non-life insurance portfolios. The advantages of modal intervals over classical intervals are the interpretative field and the extension of the calculation possibilities that modal intervals offer. To achieve this, we will analyse and propose some properties of modal interval probability that allow us to ensure that the cumulative distribution function and the probability density function of the aggregated cost with which we will work are modal interval functions and, therefore, they can be correctly interpreted from this new point of view.

Suggested Citation

  • Roman Adillon & Lambert Jorba & Maite Mármol, 2025. "An Extension of Interval Probabilities using Modal Interval Theory and its Application to Non-life Insurance," Methodology and Computing in Applied Probability, Springer, vol. 27(2), pages 1-17, June.
  • Handle: RePEc:spr:metcap:v:27:y:2025:i:2:d:10.1007_s11009-025-10164-8
    DOI: 10.1007/s11009-025-10164-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-025-10164-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-025-10164-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albrecher, Hansjörg & Constantinescu, Corina & Loisel, Stephane, 2011. "Explicit ruin formulas for models with dependence among risks," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 265-270, March.
    2. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2008. "Robustness analysis and convergence of empirical finite-time ruin probabilities and estimation risk solvency margin," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 746-762, April.
    3. Yan Wang, 2010. "Imprecise probabilities based on generalised intervals for system reliability assessment," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 4(4), pages 319-342.
    4. Shapiro, Arnold F., 2013. "Modeling future lifetime as a fuzzy random variable," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 864-870.
    5. Niemiec, Małgorzata, 2007. "Bonus-malus Systems as Markov Set-chains," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 53-65, May.
    6. Popova, Elmira & Wu, Hsien-Chung, 1999. "Renewal reward processes with fuzzy rewards and their applications to T-age replacement policies," European Journal of Operational Research, Elsevier, vol. 117(3), pages 606-617, September.
    7. Pablo J. Villacorta & Laura González-Vila Puchades & Jorge de Andrés-Sánchez, 2021. "Fuzzy Markovian Bonus-Malus Systems in Non-Life Insurance," Mathematics, MDPI, vol. 9(4), pages 1-23, February.
    8. Huang, Tao & Zhao, Ruiqing & Tang, Wansheng, 2009. "Risk model with fuzzy random individual claim amount," European Journal of Operational Research, Elsevier, vol. 192(3), pages 879-890, February.
    9. Garrido, J. & Genest, C. & Schulz, J., 2016. "Generalized linear models for dependent frequency and severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 205-215.
    10. Castañer, Anna & Claramunt, M. Mercè & Lefèvre, Claude & Loisel, Stéphane, 2019. "Partially Schur-constant models," Journal of Multivariate Analysis, Elsevier, vol. 172(C), pages 47-58.
    11. Shapiro, Arnold F., 2004. "Fuzzy logic in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 399-424, October.
    12. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre, 2019. "Collective risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 153-168.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo J. Villacorta & Laura González-Vila Puchades & Jorge de Andrés-Sánchez, 2021. "Fuzzy Markovian Bonus-Malus Systems in Non-Life Insurance," Mathematics, MDPI, vol. 9(4), pages 1-23, February.
    2. de Andrés-Sánchez, Jorge & González-Vila Puchades, Laura, 2017. "The valuation of life contingencies: A symmetrical triangular fuzzy approximation," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 83-94.
    3. Yao, Kai & Qin, Zhongfeng, 2015. "A modified insurance risk process with uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 227-233.
    4. Daniela Ungureanu & Raluca Vernic, 2015. "On a fuzzy cash flow model with insurance applications," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 38(1), pages 39-54, April.
    5. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.
    6. Dimitrova, Dimitrina S. & Kaishev, Vladimir K. & Zhao, Shouqi, 2015. "On finite-time ruin probabilities in a generalized dual risk model with dependence," European Journal of Operational Research, Elsevier, vol. 242(1), pages 134-148.
    7. Jelena Lukić & Mirjana Misita & Dragan D. Milanović & Ankica Borota-Tišma & Aleksandra Janković, 2022. "Determining the Risk Level in Client Analysis by Applying Fuzzy Logic in Insurance Sector," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    8. Salazar García, Juan Fernando & Guzmán Aguilar, Diana Sirley & Hoyos Nieto, Daniel Arturo, 2023. "Modelación de una prima de seguros mediante la aplicación de métodos actuariales, teoría de fallas y Black-Scholes en la salud en Colombia [Modelling of an insurance premium through the application," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 35(1), pages 330-359, June.
    9. Luukka, Pasi & Collan, Mikael, 2015. "New fuzzy insurance pricing method for giga-investment project insurance," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 22-29.
    10. Oh, Rosy & Lee, Youngju & Zhu, Dan & Ahn, Jae Youn, 2021. "Predictive risk analysis using a collective risk model: Choosing between past frequency and aggregate severity information," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 127-139.
    11. Claude Lefèvre & Matthieu Simon, 2021. "Schur-Constant and Related Dependence Models, with Application to Ruin Probabilities," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 317-339, March.
    12. Lefèvre Claude & Picard Philippe, 2023. "Abel-Gontcharoff polynomials, parking trajectories and ruin probabilities," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-17.
    13. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    14. Dhiti Osatakul & Xueyuan Wu, 2021. "Discrete-Time Risk Models with Claim Correlated Premiums in a Markovian Environment," Risks, MDPI, vol. 9(1), pages 1-23, January.
    15. Roland R. Ramsahai, 2020. "Connecting actuarial judgment to probabilistic learning techniques with graph theory," Papers 2007.15475, arXiv.org.
    16. Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
    17. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Working Papers hal-02891046, HAL.
    18. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2009. "Convergence and asymptotic variance of bootstrapped finite-time ruin probabilities with partly shifted risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 374-381, December.
    19. Koissi, Marie-Claire & Shapiro, Arnold F., 2006. "Fuzzy formulation of the Lee-Carter model for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 287-309, December.
    20. Cuberos A. & Masiello E. & Maume-Deschamps V., 2015. "High level quantile approximations of sums of risks," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:27:y:2025:i:2:d:10.1007_s11009-025-10164-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.