IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v56y2014icp102-111.html
   My bibliography  Save this article

Optimal initiation of a GLWB in a variable annuity: No Arbitrage approach

Author

Listed:
  • Huang, H.
  • Milevsky, M.A.
  • Salisbury, T.S.

Abstract

This paper offers a financial economic perspective on the optimal time (and age) at which the owner of a Variable Annuity (VA) policy with a Guaranteed Lifetime Withdrawal Benefit (GLWB) rider should initiate guaranteed lifetime income payments. We bypass issues related to utility, bequest and consumption preference by treating the VA as liquid and tradable. This allows us to use an American option pricing framework to derive a so-called optimal initiation region. Our main practical finding is that given current design parameters in which volatility (asset allocation) is restricted to less than 20%, while guaranteed payout rates (GPR) as well as bonus (roll-up) rates are less than 5%, GLWBs that are in-the-money should be turned on by the late 50s and certainly the early 60s. The exception to the rule is when a non-constant GPR is about to increase to a higher age band, in which case the optimal policy is to wait until the new GPR is hit and then initiate immediately. Also, to offer a different perspective, we invert the model and solve for the bonus (roll-up) rate that is required to justify delaying initiation at any age. We find that the required bonus is quite high and more than what is currently promised by existing products. Our methodology and results should be of interest to researchers as well as to the individuals that collectively have over $1 USD trillion in aggregate invested in these products. We conclude by suggesting that much of the non-initiation at older ages is irrational (which obviously benefits the insurance industry).

Suggested Citation

  • Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2014. "Optimal initiation of a GLWB in a variable annuity: No Arbitrage approach," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 102-111.
  • Handle: RePEc:eee:insuma:v:56:y:2014:i:c:p:102-111
    DOI: 10.1016/j.insmatheco.2014.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668714000407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2014.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ngai, Andrew & Sherris, Michael, 2011. "Longevity risk management for life and variable annuities: The effectiveness of static hedging using longevity bonds and derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 100-114, July.
    2. Bacinello, Anna Rita & Millossovich, Pietro & Olivieri, Annamaria & Pitacco, Ermanno, 2011. "Variable annuities: A unifying valuation approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 285-297.
    3. Gabriele Stabile, 2006. "Optimal Timing Of The Annuity Purchase: Combined Stochastic Control And Optimal Stopping Problem," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 151-170.
    4. Gabriella Piscopo & Steven Haberman, 2011. "The Valuation of Guaranteed Lifelong Withdrawal Benefit Options in Variable Annuity Contracts and the Impact of Mortality Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(1), pages 59-76.
    5. Claymore Marshall & Mary Hardy & David Saunders, 2010. "Valuation of a Guaranteed Minimum Income Benefit," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(1), pages 38-58.
    6. Ng, Andrew Cheuk-Yin & Li, Johnny Siu-Hang, 2011. "Valuing variable annuity guarantees with the multivariate Esscher transform," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 393-400.
    7. Gan, Guojun, 2013. "Application of data clustering and machine learning in variable annuity valuation," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 795-801.
    8. Bernard, Carole & MacKay, Anne & Muehlbeyer, Max, 2014. "Optimal surrender policy for variable annuity guarantees," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 116-128.
    9. Feng, Runhuan & Volkmer, Hans W., 2012. "Analytical calculation of risk measures for variable annuity guaranteed benefits," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 636-648.
    10. Gao, Jin & Ulm, Eric R., 2012. "Optimal consumption and allocation in variable annuities with Guaranteed Minimum Death Benefits," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 586-598.
    11. Milevsky, Moshe A. & Young, Virginia R., 2007. "Annuitization and asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 31(9), pages 3138-3177, September.
    12. Boyle, Phelim & Hardy, Mary, 2003. "Guaranteed Annuity Options," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 125-152, November.
    13. Milevsky, Moshe A. & Salisbury, Thomas S., 2006. "Financial valuation of guaranteed minimum withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 21-38, February.
    14. Windcliff, H. & Forsyth, P. A. & Vetzal, K. R., 2001. "Valuation of segregated funds: shout options with maturity extensions," Insurance: Mathematics and Economics, Elsevier, vol. 29(1), pages 1-21, August.
    15. Coleman, Thomas F. & Li, Yuying & Patron, Maria-Cristina, 2006. "Hedging guarantees in variable annuities under both equity and interest rate risks," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 215-228, April.
    16. X. Lin & Ken Tan & Hailiang Yang, 2009. "Pricing Annuity Guarantees Under a Regime-Switching Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(3), pages 316-332.
    17. Chen, Z. & Vetzal, K. & Forsyth, P.A., 2008. "The effect of modelling parameters on the value of GMWB guarantees," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 165-173, August.
    18. Yang, Sharon S. & Dai, Tian-Shyr, 2013. "A flexible tree for evaluating guaranteed minimum withdrawal benefits under deferred life annuity contracts with various provisions," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 231-242.
    19. Kling, Alexander & Ruez, Frederik & Ruß, Jochen, 2011. "The Impact of Stochastic Volatility on Pricing, Hedging, and Hedge Efficiency of Withdrawal Benefit Guarantees in Variable Annuities," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 511-545, November.
    20. Min Dai & Yue Kuen Kwok & Jianping Zong, 2008. "Guaranteed Minimum Withdrawal Benefit In Variable Annuities," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 595-611, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Runhuan & Jing, Xiaochen, 2017. "Analytical valuation and hedging of variable annuity guaranteed lifetime withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 36-48.
    2. Feng, Runhuan & Huang, Huaxiong, 2016. "Statutory financial reporting for variable annuity guaranteed death benefits: Market practice, mathematical modeling and computation," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 54-64.
    3. Steinorth, Petra & Mitchell, Olivia S., 2015. "Valuing variable annuities with guaranteed minimum lifetime withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 246-258.
    4. Runhuan Feng & Jan Vecer, 2017. "Risk based capital for guaranteed minimum withdrawal benefit," Quantitative Finance, Taylor & Francis Journals, vol. 17(3), pages 471-478, March.
    5. Xu, Wei & Chen, Yuehuan & Coleman, Conrad & Coleman, Thomas F., 2018. "Moment matching machine learning methods for risk management of large variable annuity portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 1-20.
    6. Hainaut, Donatien & Deelstra, Griselda, 2014. "Optimal timing for annuitization, based on jump diffusion fund and stochastic mortality," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 124-146.
    7. Moenig, Thorsten, 2021. "Variable annuities: Market incompleteness and policyholder behavior," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 63-78.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Forsyth, Peter & Vetzal, Kenneth, 2014. "An optimal stochastic control framework for determining the cost of hedging of variable annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 29-53.
    2. Gan, Guojun, 2013. "Application of data clustering and machine learning in variable annuity valuation," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 795-801.
    3. Bernard, Carole & Kwak, Minsuk, 2016. "Semi-static hedging of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 173-186.
    4. Steinorth, Petra & Mitchell, Olivia S., 2015. "Valuing variable annuities with guaranteed minimum lifetime withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 246-258.
    5. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    6. Dong, Bing & Xu, Wei & Sevic, Aleksandar & Sevic, Zeljko, 2020. "Efficient willow tree method for variable annuities valuation and risk management☆," International Review of Financial Analysis, Elsevier, vol. 68(C).
    7. Wang, Gu & Zou, Bin, 2021. "Optimal fee structure of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 587-601.
    8. Moenig, Thorsten, 2021. "Variable annuities: Market incompleteness and policyholder behavior," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 63-78.
    9. Hsieh, Ming-hua & Wang, Jennifer L. & Chiu, Yu-Fen & Chen, Yen-Chih, 2018. "Valuation of variable long-term care Annuities with Guaranteed Lifetime Withdrawal Benefits: A variance reduction approach," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 246-254.
    10. Feng, Runhuan & Yi, Bingji, 2019. "Quantitative modeling of risk management strategies: Stochastic reserving and hedging of variable annuity guaranteed benefits," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 60-73.
    11. Pavel V. Shevchenko & Xiaolin Luo, 2016. "A unified pricing of variable annuity guarantees under the optimal stochastic control framework," Papers 1605.00339, arXiv.org.
    12. Parsiad Azimzadeh & Peter A. Forsyth, 2015. "The existence of optimal bang-bang controls for GMxB contracts," Papers 1502.05743, arXiv.org, revised Nov 2015.
    13. Feng, Runhuan & Huang, Huaxiong, 2016. "Statutory financial reporting for variable annuity guaranteed death benefits: Market practice, mathematical modeling and computation," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 54-64.
    14. Daniel Doyle & Chris Groendyke, 2018. "Using Neural Networks to Price and Hedge Variable Annuity Guarantees," Risks, MDPI, vol. 7(1), pages 1-19, December.
    15. Pavel V. Shevchenko & Xiaolin Luo, 2016. "A Unified Pricing of Variable Annuity Guarantees under the Optimal Stochastic Control Framework," Risks, MDPI, vol. 4(3), pages 1-31, July.
    16. Mrad, Fatma & Hamdi, Haykel & Naoui, Kamel & Abid, Ilyes, 2023. "The GMWB guarantee embedded in Life Insurance Contracts: Fair Value Pricing Problem," Finance Research Letters, Elsevier, vol. 51(C).
    17. Ignatieva, Katja & Song, Andrew & Ziveyi, Jonathan, 2016. "Pricing and hedging of guaranteed minimum benefits under regime-switching and stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 286-300.
    18. Claudio Fontana & Francesco Rotondi, 2022. "Valuation of general GMWB annuities in a low interest rate environment," Papers 2208.10183, arXiv.org, revised Aug 2023.
    19. Jin Sun & Pavel V. Shevchenko & Man Chung Fung, 2018. "The Impact of Management Fees on the Pricing of Variable Annuity Guarantees," Risks, MDPI, vol. 6(3), pages 1-20, September.
    20. Maciej Augustyniak & Mathieu Boudreault, 2017. "Mitigating Interest Rate Risk in Variable Annuities: An Analysis of Hedging Effectiveness under Model Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(4), pages 502-525, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:56:y:2014:i:c:p:102-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.