IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v43y2008i1p165-173.html
   My bibliography  Save this article

The effect of modelling parameters on the value of GMWB guarantees

Author

Listed:
  • Chen, Z.
  • Vetzal, K.
  • Forsyth, P.A.

Abstract

In this article, an extensive study of the no-arbitrage fee for Guaranteed Minimum Withdrawal Benefit (GMWB) variable annuity riders is carried out. The value of the GMWB guarantee increases substantially when taking into account the separation of mutual fund fees and the fees earmarked for hedging the guarantee. In addition, the fee is also adversely affected if the underlying risky asset follows a jump diffusion process. We also explore the effects of various modelling assumptions on the optimal withdrawal strategy of the contract holder, as well as the impact on the guarantee value of sub-optimal withdrawal behaviour. Our general conclusions are that only if several unrealistic modelling assumptions are made is it possible to obtain GMWB fees in the same range as is normally charged. In all other cases, it would appear that typical fees are not enough to cover the cost of hedging these guarantees.

Suggested Citation

  • Chen, Z. & Vetzal, K. & Forsyth, P.A., 2008. "The effect of modelling parameters on the value of GMWB guarantees," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 165-173, August.
  • Handle: RePEc:eee:insuma:v:43:y:2008:i:1:p:165-173
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00053-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milevsky, Moshe A. & Salisbury, Thomas S., 2006. "Financial valuation of guaranteed minimum withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 21-38, February.
    2. Windcliff, H. & Forsyth, P. A. & Vetzal, K. R., 2001. "Valuation of segregated funds: shout options with maturity extensions," Insurance: Mathematics and Economics, Elsevier, vol. 29(1), pages 1-21, August.
    3. Leif Andersen & Jesper Andreasen, 2000. "Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing," Review of Derivatives Research, Springer, vol. 4(3), pages 231-262, October.
    4. C. He & J. Kennedy & T. Coleman & P. Forsyth & Y. Li & K. Vetzal, 2006. "Calibration and hedging under jump diffusion," Review of Derivatives Research, Springer, vol. 9(1), pages 1-35, January.
    5. Min Dai & Yue Kuen Kwok & Jianping Zong, 2008. "Guaranteed Minimum Withdrawal Benefit In Variable Annuities," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 595-611.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Amir Hejazi & Kenneth R. Jackson, 2016. "A Neural Network Approach to Efficient Valuation of Large Portfolios of Variable Annuities," Papers 1606.07831, arXiv.org.
    2. Jin Sun & Pavel V. Shevchenko & Man Chung Fung, 2017. "A note on the impact of management fees on the pricing of variable annuity guarantees," Papers 1705.03787, arXiv.org, revised May 2017.
    3. Yang, Sharon S. & Dai, Tian-Shyr, 2013. "A flexible tree for evaluating guaranteed minimum withdrawal benefits under deferred life annuity contracts with various provisions," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 231-242.
    4. Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2014. "Optimal initiation of a GLWB in a variable annuity: No Arbitrage approach," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 102-111.
    5. Steinorth, Petra & Mitchell, Olivia S., 2015. "Valuing variable annuities with guaranteed minimum lifetime withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 246-258.
    6. repec:bla:jrinsu:v:83:y:2016:i:4:p:979-1006 is not listed on IDEAS
    7. Martin Eling & Michael Kochanski, 2013. "Research on lapse in life insurance: what has been done and what needs to be done?," Journal of Risk Finance, Emerald Group Publishing, vol. 14(4), pages 392-413, August.
    8. Hejazi, Seyed Amir & Jackson, Kenneth R., 2016. "A neural network approach to efficient valuation of large portfolios of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 169-181.
    9. Ignatieva, Katja & Song, Andrew & Ziveyi, Jonathan, 2016. "Pricing and hedging of guaranteed minimum benefits under regime-switching and stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 286-300.
    10. Peter A. Forsyth & George Labahn, 2017. "$\epsilon$-Monotone Fourier Methods for Optimal Stochastic Control in Finance," Papers 1710.08450, arXiv.org, revised Apr 2018.
    11. Marcos Escobar & Mikhail Krayzler & Franz Ramsauer & David Saunders & Rudi Zagst, 2016. "Incorporation of Stochastic Policyholder Behavior in Analytical Pricing of GMABs and GMDBs," Risks, MDPI, Open Access Journal, vol. 4(4), pages 1-36, November.
    12. Gao, Jin & Ulm, Eric R., 2012. "Optimal consumption and allocation in variable annuities with Guaranteed Minimum Death Benefits," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 586-598.
    13. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2016. "Pricing and Hedging GMWB in the Heston and in the Black-Scholes with Stochastic Interest Rate Models," Papers 1602.09078, arXiv.org, revised Mar 2016.
    14. Pavel V. Shevchenko & Xiaolin Luo, 2016. "A Unified Pricing of Variable Annuity Guarantees under the Optimal Stochastic Control Framework," Risks, MDPI, Open Access Journal, vol. 4(3), pages 1-31, July.
    15. Bacinello, Anna Rita & Millossovich, Pietro & Olivieri, Annamaria & Pitacco, Ermanno, 2011. "Variable annuities: A unifying valuation approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 285-297.
    16. Seyed Amir Hejazi & Kenneth R. Jackson & Guojun Gan, 2017. "A Spatial Interpolation Framework for Efficient Valuation of Large Portfolios of Variable Annuities," Papers 1701.04134, arXiv.org.
    17. Cody B. Hyndman & Menachem Wenger, 2014. "GMWB Riders in a Binomial Framework - Pricing, Hedging, and Diversification of Mortality Risk," Papers 1410.7453, arXiv.org, revised Jul 2016.
    18. Pavel V. Shevchenko & Xiaolin Luo, 2016. "A unified pricing of variable annuity guarantees under the optimal stochastic control framework," Papers 1605.00339, arXiv.org.
    19. Bernard, Carole & Kwak, Minsuk, 2016. "Semi-static hedging of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 173-186.
    20. Forsyth, Peter & Vetzal, Kenneth, 2014. "An optimal stochastic control framework for determining the cost of hedging of variable annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 29-53.
    21. Parsiad Azimzadeh & Peter A. Forsyth, 2015. "The existence of optimal bang-bang controls for GMxB contracts," Papers 1502.05743, arXiv.org, revised Nov 2015.
    22. Goudenège, Ludovic & Molent, Andrea & Zanette, Antonino, 2016. "Pricing and hedging GLWB in the Heston and in the Black–Scholes with stochastic interest rate models," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 38-57.
    23. Huang, Yao Tung & Kwok, Yue Kuen, 2014. "Analysis of optimal dynamic withdrawal policies in withdrawal guarantee products," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 19-43.
    24. Antje Mahayni & Judith C. Schneider, 2016. "Minimum return guarantees, investment caps, and investment flexibility," Review of Derivatives Research, Springer, vol. 19(2), pages 85-111, July.
    25. Ludovic Goudenege & Andrea Molent & Antonino Zanette, 2015. "Pricing and Hedging GLWB in the Heston and in the Black-Scholes with Stochastic Interest Rate Models," Papers 1509.02686, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:43:y:2008:i:1:p:165-173. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.