IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v68y2020ics1057521919305149.html
   My bibliography  Save this article

Efficient willow tree method for variable annuities valuation and risk management☆

Author

Listed:
  • Dong, Bing
  • Xu, Wei
  • Sevic, Aleksandar
  • Sevic, Zeljko

Abstract

Variable annuities (VAs) with various guarantees are popular retirement products in the past decades. However, due to the sophistication of the embedded guarantees, most existing methods only focus on the one of embedded guarantees underlying one specified stochastic model. The method to evaluate VAs with all guarantees and manage its risk is very limited, except for the Monte Carlo method. In this paper, we propose an efficient willow tree method to evaluate VAs embedded with all popular guarantees on the market underlying various stochastic models. Moreover, our tree structure is also applicable to compute dollar delta, value at risk (VaR) and conditional tail expectation (CTE) in hedging and risk-based capital calculation. Numerical experiments demonstrate the accuracy and efficiency of our method in pricing and managing the risk of VAs.

Suggested Citation

  • Dong, Bing & Xu, Wei & Sevic, Aleksandar & Sevic, Zeljko, 2020. "Efficient willow tree method for variable annuities valuation and risk management☆," International Review of Financial Analysis, Elsevier, vol. 68(C).
  • Handle: RePEc:eee:finana:v:68:y:2020:i:c:s1057521919305149
    DOI: 10.1016/j.irfa.2019.101429
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521919305149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2019.101429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laura Ballotta & Ioannis Kyriakou, 2015. "Convertible bond valuation in a jump diffusion setting with stochastic interest rates," Quantitative Finance, Taylor & Francis Journals, vol. 15(1), pages 115-129, January.
    2. Bacinello, Anna Rita & Millossovich, Pietro & Olivieri, Annamaria & Pitacco, Ermanno, 2011. "Variable annuities: A unifying valuation approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 285-297.
    3. Clark, Gordon L. & Fiaschetti, Maurizio & Tufano, Peter & Viehs, Michael, 2018. "Playing with your future: Who gambles in defined-contribution pension plans?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 213-225.
    4. Abdou Kelani & François Quittard-Pinon, 2017. "Pricing and Hedging Variable Annuities in a Lévy Market : A Risk Management Perspective," Post-Print hal-02313300, HAL.
    5. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2017. "Equity-linked annuity pricing with cliquet-style guarantees in regime-switching and stochastic volatility models with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 46-62.
    6. Bing Dong & Wei Xu & Yue Kuen Kwok, 2019. "Willow tree algorithms for pricing Guaranteed Minimum Withdrawal Benefits under jump-diffusion and CEV models," Quantitative Finance, Taylor & Francis Journals, vol. 19(10), pages 1741-1761, October.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Ng, Andrew Cheuk-Yin & Li, Johnny Siu-Hang & Chan, Wai-Sum, 2011. "Modeling investment guarantees in Japan: A risk-neutral GARCH approach," International Review of Financial Analysis, Elsevier, vol. 20(1), pages 20-26, January.
    9. Milevsky, Moshe A. & Salisbury, Thomas S., 2006. "Financial valuation of guaranteed minimum withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 21-38, February.
    10. Pelsser, Antoon, 2003. "Pricing and hedging guaranteed annuity options via static option replication," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 283-296, October.
    11. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    12. Sutcliffe, Charles, 2015. "Trading death: The implications of annuity replication for the annuity puzzle, arbitrage, speculation and portfolios," International Review of Financial Analysis, Elsevier, vol. 38(C), pages 163-174.
    13. I. D. Hill & R. Hill & R. L. Holder, 1976. "Fitting Johnson Curves by Moments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(2), pages 180-189, June.
    14. Yang, Sharon S. & Dai, Tian-Shyr, 2013. "A flexible tree for evaluating guaranteed minimum withdrawal benefits under deferred life annuity contracts with various provisions," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 231-242.
    15. Luo, Xiaolin & Shevchenko, Pavel V., 2015. "Valuation of variable annuities with guaranteed minimum withdrawal and death benefits via stochastic control optimization," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 5-15.
    16. Pavel V. Shevchenko & Xiaolin Luo, 2016. "A unified pricing of variable annuity guarantees under the optimal stochastic control framework," Papers 1605.00339, arXiv.org.
    17. Xu, Wei & Chen, Yuehuan & Coleman, Conrad & Coleman, Thomas F., 2018. "Moment matching machine learning methods for risk management of large variable annuity portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 1-20.
    18. Ling Lu & Wei Xu & Zhehui Qian, 2017. "Efficient willow tree method for European-style and American-style moving average barrier options pricing," Quantitative Finance, Taylor & Francis Journals, vol. 17(6), pages 889-906, June.
    19. Feng, Runhuan & Kuznetsov, Alexey & Yang, Fenghao, 2019. "Exponential functionals of Lévy processes and variable annuity guaranteed benefits," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 604-625.
    20. Wei Xu & Zhiwu Hong & Chenxiang Qin, 2013. "A new sampling strategy willow tree method with application to path-dependent option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 861-872, May.
    21. Brennan, Michael J & Schwartz, Eduardo S, 1979. "Alternative Investment Strategies for the Issuers of Equity Linked Life Insurance Policies with an Asset Value Guarantee," The Journal of Business, University of Chicago Press, vol. 52(1), pages 63-93, January.
    22. Ignatieva, Katja & Song, Andrew & Ziveyi, Jonathan, 2018. "Fourier Space Time-Stepping Algorithm For Valuing Guaranteed Minimum Withdrawal Benefits In Variable Annuities Under Regime-Switching And Stochastic Mortality," ASTIN Bulletin, Cambridge University Press, vol. 48(1), pages 139-169, January.
    23. Guojun Gan, 2018. "Valuation of Large Variable Annuity Portfolios Using Linear Models with Interactions," Risks, MDPI, vol. 6(3), pages 1-19, July.
    24. Claymore Marshall & Mary Hardy & David Saunders, 2010. "Valuation of a Guaranteed Minimum Income Benefit," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(1), pages 38-58.
    25. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    26. Gao, Jin & Ulm, Eric R., 2012. "Optimal consumption and allocation in variable annuities with Guaranteed Minimum Death Benefits," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 586-598.
    27. Ballotta, Laura & Haberman, Steven, 2003. "Valuation of guaranteed annuity conversion options," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 87-108, August.
    28. Runhuan Feng & Jan Vecer, 2017. "Risk based capital for guaranteed minimum withdrawal benefit," Quantitative Finance, Taylor & Francis Journals, vol. 17(3), pages 471-478, March.
    29. Bauer, Daniel & Kling, Alexander & Russ, Jochen, 2008. "A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities1," ASTIN Bulletin, Cambridge University Press, vol. 38(2), pages 621-651, November.
    30. Abdou Kélani & François Quittard-Pinon, 2017. "Pricing and Hedging Variable Annuities in a Lévy Market: A Risk Management Perspective," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(1), pages 209-238, March.
    31. Boyle, Phelim & Hardy, Mary, 2003. "Guaranteed Annuity Options," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 125-152, November.
    32. Brennan, Michael J. & Schwartz, Eduardo S., 1976. "The pricing of equity-linked life insurance policies with an asset value guarantee," Journal of Financial Economics, Elsevier, vol. 3(3), pages 195-213, June.
    33. Pavel V. Shevchenko & Xiaolin Luo, 2016. "A Unified Pricing of Variable Annuity Guarantees under the Optimal Stochastic Control Framework," Risks, MDPI, vol. 4(3), pages 1-31, July.
    34. Xiaolin Luo & Pavel V. Shevchenko, 2014. "Valuation of Variable Annuities with Guaranteed Minimum Withdrawal and Death Benefits via Stochastic Control Optimization," Papers 1411.5453, arXiv.org, revised Apr 2015.
    35. Guojun Gan & Emiliano A. Valdez, 2018. "Regression Modeling for the Valuation of Large Variable Annuity Portfolios," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(1), pages 40-54, January.
    36. Jennifer Alonso-García & Oliver Wood & Jonathan Ziveyi, 2018. "Pricing and hedging guaranteed minimum withdrawal benefits under a general Lévy framework using the COS method," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 1049-1075, June.
    37. Forsyth, Peter & Vetzal, Kenneth, 2014. "An optimal stochastic control framework for determining the cost of hedging of variable annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 29-53.
    38. Min Dai & Yue Kuen Kwok & Jianping Zong, 2008. "Guaranteed Minimum Withdrawal Benefit In Variable Annuities," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 595-611, October.
    39. Carole Bernard & Zhenyu Cui & Steven Vanduffel, 2017. "Impact of Flexible Periodic Premiums on Variable Annuity Guarantees," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(1), pages 63-86, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hangsuck Lee & Hongjun Ha & Minha Lee, 2022. "Piecewise linear boundary crossing probabilities, barrier options, and variable annuities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2248-2272, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaowen Lu & Duy-Minh Dang, 2023. "A semi-Lagrangian $\epsilon$-monotone Fourier method for continuous withdrawal GMWBs under jump-diffusion with stochastic interest rate," Papers 2310.00606, arXiv.org.
    2. Huansang Xu & Ruyi Liu & Marek Rutkowski, 2023. "Equity Protection Swaps: A New Type of Investment Insurance for Holders of Superannuation Accounts," Papers 2305.09472, arXiv.org, revised Apr 2024.
    3. Thorsten Moenig, 2021. "Efficient valuation of variable annuity portfolios with dynamic programming," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 1023-1055, December.
    4. Claudio Fontana & Francesco Rotondi, 2022. "Valuation of general GMWB annuities in a low interest rate environment," Papers 2208.10183, arXiv.org, revised Aug 2023.
    5. Shevchenko, Pavel V. & Luo, Xiaolin, 2017. "Valuation of variable annuities with Guaranteed Minimum Withdrawal Benefit under stochastic interest rate," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 104-117.
    6. Daniel Doyle & Chris Groendyke, 2018. "Using Neural Networks to Price and Hedge Variable Annuity Guarantees," Risks, MDPI, vol. 7(1), pages 1-19, December.
    7. Fontana, Claudio & Rotondi, Francesco, 2023. "Valuation of general GMWB annuities in a low interest rate environment," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 142-167.
    8. Pavel V. Shevchenko & Xiaolin Luo, 2016. "A Unified Pricing of Variable Annuity Guarantees under the Optimal Stochastic Control Framework," Risks, MDPI, vol. 4(3), pages 1-31, July.
    9. Jin Sun & Pavel V. Shevchenko & Man Chung Fung, 2017. "A note on the impact of management fees on the pricing of variable annuity guarantees," Papers 1705.03787, arXiv.org, revised May 2017.
    10. Gan, Guojun, 2013. "Application of data clustering and machine learning in variable annuity valuation," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 795-801.
    11. Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2014. "Optimal initiation of a GLWB in a variable annuity: No Arbitrage approach," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 102-111.
    12. Jin Sun & Pavel V. Shevchenko & Man Chung Fung, 2018. "The Impact of Management Fees on the Pricing of Variable Annuity Guarantees," Risks, MDPI, vol. 6(3), pages 1-20, September.
    13. Kouritzin, Michael A. & MacKay, Anne, 2018. "VIX-linked fees for GMWBs via explicit solution simulation methods," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 1-17.
    14. Moenig, Thorsten, 2021. "Variable annuities: Market incompleteness and policyholder behavior," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 63-78.
    15. Pavel V. Shevchenko & Xiaolin Luo, 2016. "A unified pricing of variable annuity guarantees under the optimal stochastic control framework," Papers 1605.00339, arXiv.org.
    16. Yang, Sharon S. & Dai, Tian-Shyr, 2013. "A flexible tree for evaluating guaranteed minimum withdrawal benefits under deferred life annuity contracts with various provisions," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 231-242.
    17. Riley Jones & Adriana Ocejo, 2019. "Assessing Guaranteed Minimum Income Benefits and Rationality of Exercising Reset Options in Variable," Papers 1911.06123, arXiv.org.
    18. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    19. Michael A. Kouritzin & Anne MacKay, 2017. "VIX-linked fees for GMWBs via Explicit Solution Simulation Methods," Papers 1708.06886, arXiv.org, revised Apr 2018.
    20. Carbonneau, Alexandre, 2021. "Deep hedging of long-term financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 327-340.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:68:y:2020:i:c:s1057521919305149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.