IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v48y2018i01p139-169_00.html
   My bibliography  Save this article

Fourier Space Time-Stepping Algorithm For Valuing Guaranteed Minimum Withdrawal Benefits In Variable Annuities Under Regime-Switching And Stochastic Mortality

Author

Listed:
  • Ignatieva, Katja
  • Song, Andrew
  • Ziveyi, Jonathan

Abstract

This paper introduces the Fourier Space Time-Stepping algorithm to the valuation of variable annuity (VA) contracts embedded with guaranteed minimum withdrawal benefit (GMWB) riders when the underlying fund dynamics evolve under the influence of a regime-switching model. Mortality risk is introduced to the valuation framework by incorporating a two-factor affine stochastic mortality model proposed in Blackburn and Sherris (2013). The paper considers both, static and dynamic policyholder withdrawal behaviour associated with GMWB riders and assesses how model parameters influence the fees levied on providing such guarantees. Our numerical experiments reveal that the GMWB fees are very sensitive to regime-switching parameters; a percentage increase in the force of interest results in significant decrease in guarantee fees. The guarantee fees increase substantially with increasing volatility levels. Numerical experiments also highlight an increasing importance of mortality as maturity of the VA contract increases. Mortality has less impact on shorter maturity contracts regardless of the policyholder's withdrawal behaviour. As much as mortality influences pricing results for long maturities, the associated guarantee fees are decreasing functions of maturities for the VA contracts. Robustness checks of the Fourier Space Time-Stepping algorithm are performed by making numerical comparisons with several existing valuation approaches.

Suggested Citation

  • Ignatieva, Katja & Song, Andrew & Ziveyi, Jonathan, 2018. "Fourier Space Time-Stepping Algorithm For Valuing Guaranteed Minimum Withdrawal Benefits In Variable Annuities Under Regime-Switching And Stochastic Mortality," ASTIN Bulletin, Cambridge University Press, vol. 48(1), pages 139-169, January.
  • Handle: RePEc:cup:astinb:v:48:y:2018:i:01:p:139-169_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S051503611700023X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Ludovic Goudenege & Andrea Molent & Antonino Zanette, 2019. "Pricing and hedging GMWB in the Heston and in the Black–Scholes with stochastic interest rate models," Computational Management Science, Springer, vol. 16(1), pages 217-248, February.
    3. Godin, Frédéric & Lai, Van Son & Trottier, Denis-Alexandre, 2019. "Option pricing under regime-switching models: Novel approaches removing path-dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 130-142.
    4. Daniel H. Alai & Katja Ignatieva & Michael Sherris, 2019. "The Investigation of a Forward-Rate Mortality Framework," Risks, MDPI, vol. 7(2), pages 1-22, June.
    5. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    6. Yaowen Lu & Duy-Minh Dang, 2023. "A semi-Lagrangian $\epsilon$-monotone Fourier method for continuous withdrawal GMWBs under jump-diffusion with stochastic interest rate," Papers 2310.00606, arXiv.org.
    7. Frédéric Godiny & Van Son Lai & Denis-Alexandre Trottier, 2019. "Option Pricing Under Regime-Switching Models: Novel Approaches Removing Path-Dependence," Working Papers 2019-014, Department of Research, Ipag Business School.
    8. Dong, Bing & Xu, Wei & Sevic, Aleksandar & Sevic, Zeljko, 2020. "Efficient willow tree method for variable annuities valuation and risk management☆," International Review of Financial Analysis, Elsevier, vol. 68(C).
    9. Lesław Gajek & Marcin Rudź, 2020. "Finite-horizon general insolvency risk measures in a regime-switching Sparre Andersen model," Methodology and Computing in Applied Probability, Springer, vol. 22(4), pages 1507-1528, December.
    10. Moenig, Thorsten, 2021. "Variable annuities: Market incompleteness and policyholder behavior," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 63-78.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:48:y:2018:i:01:p:139-169_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.