IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v7y2018i1p1-d192723.html
   My bibliography  Save this article

Using Neural Networks to Price and Hedge Variable Annuity Guarantees

Author

Listed:
  • Daniel Doyle

    () (VA Hedging & Forecasting, Talcott Resolution, Windsor, CT 06095, USA)

  • Chris Groendyke

    () (Department of Mathematics, Robert Morris University, Moon Township, PA 15108, USA)

Abstract

This paper explores the use of neural networks to reduce the computational cost of pricing and hedging variable annuity guarantees. Pricing these guarantees can take a considerable amount of time because of the large number of Monte Carlo simulations that are required for the fair value of these liabilities to converge. This computational requirement worsens when Greeks must be calculated to hedge the liabilities of these guarantees. A feedforward neural network is a universal function approximator that is proposed as a useful machine learning technique to interpolate between previously calculated values and avoid running a full simulation to obtain a value for the liabilities. We propose methodologies utilizing neural networks for both the tasks of pricing as well as hedging four different varieties of variable annuity guarantees. We demonstrated a significant efficiency gain using neural networks in this manner. We also experimented with different error functions in the training of the neural networks and examined the resulting changes in network performance.

Suggested Citation

  • Daniel Doyle & Chris Groendyke, 2018. "Using Neural Networks to Price and Hedge Variable Annuity Guarantees," Risks, MDPI, Open Access Journal, vol. 7(1), pages 1-19, December.
  • Handle: RePEc:gam:jrisks:v:7:y:2018:i:1:p:1-:d:192723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/7/1/1/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/7/1/1/
    Download Restriction: no

    References listed on IDEAS

    as
    1. John Cotter & Jim Hanly, 2006. "Reevaluating hedging performance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(7), pages 677-702, July.
    2. Shapiro, Arnold F., 2002. "The merging of neural networks, fuzzy logic, and genetic algorithms," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 115-131, August.
    3. Fei Chen & Charles Sutcliffe, 2012. "Pricing And Hedging Short Sterling Options Using Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 128-149, April.
    4. Seyed Amir Hejazi & Kenneth R. Jackson, 2016. "A Neural Network Approach to Efficient Valuation of Large Portfolios of Variable Annuities," Papers 1606.07831, arXiv.org.
    5. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    6. Seyed Amir Hejazi & Kenneth R. Jackson & Guojun Gan, 2017. "A Spatial Interpolation Framework for Efficient Valuation of Large Portfolios of Variable Annuities," Papers 1701.04134, arXiv.org.
    7. Guojun Gan, 2018. "Valuation of Large Variable Annuity Portfolios Using Linear Models with Interactions," Risks, MDPI, Open Access Journal, vol. 6(3), pages 1-19, July.
    8. Armstrong, Michael J., 2001. "The reset decision for segregated fund maturity guarantees," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 257-269, October.
    9. Claymore Marshall & Mary Hardy & David Saunders, 2010. "Valuation of a Guaranteed Minimum Income Benefit," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(1), pages 38-58.
    10. Gan, Guojun, 2013. "Application of data clustering and machine learning in variable annuity valuation," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 795-801.
    11. Feng, Runhuan & Volkmer, Hans W., 2012. "Analytical calculation of risk measures for variable annuity guaranteed benefits," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 636-648.
    12. Mary Hardy, 2000. "Hedging and Reserving for Single-Premium Segregated Fund Contracts," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(2), pages 63-74.
    13. Hejazi, Seyed Amir & Jackson, Kenneth R., 2016. "A neural network approach to efficient valuation of large portfolios of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 169-181.
    14. Andrew Ng & Johnny Li, 2013. "Pricing and Hedging Variable Annuity Guarantees with Multiasset Stochastic Investment Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 17(1), pages 41-62.
    15. Kevin Kuo, 2018. "DeepTriangle: A Deep Learning Approach to Loss Reserving," Papers 1804.09253, arXiv.org, revised Sep 2019.
    16. Milevsky, Moshe A. & Salisbury, Thomas S., 2006. "Financial valuation of guaranteed minimum withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 21-38, February.
    17. Brennan, Michael J. & Schwartz, Eduardo S., 1976. "The pricing of equity-linked life insurance policies with an asset value guarantee," Journal of Financial Economics, Elsevier, vol. 3(3), pages 195-213, June.
    18. Windcliff, H. & Forsyth, P. A. & Vetzal, K. R., 2001. "Valuation of segregated funds: shout options with maturity extensions," Insurance: Mathematics and Economics, Elsevier, vol. 29(1), pages 1-21, August.
    19. Ko, Bangwon & Shiu, Elias S.W. & Wei, Li, 2010. "Pricing maturity guarantee with dynamic withdrawal benefit," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 216-223, October.
    20. Guojun Gan & X. Sheldon Lin, 2017. "Efficient Greek Calculation of Variable Annuity Portfolios for Dynamic Hedging: A Two-Level Metamodeling Approach," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(2), pages 161-177, April.
    21. Boyle, Phelim P. & Hardy, Mary R., 1997. "Reserving for maturity guarantees: Two approaches," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 113-127, November.
    22. Xiaolin Luo & Pavel V. Shevchenko, 2014. "Valuation of Variable Annuities with Guaranteed Minimum Withdrawal and Death Benefits via Stochastic Control Optimization," Papers 1411.5453, arXiv.org, revised Apr 2015.
    23. Guojun Gan & Emiliano A. Valdez, 2018. "Regression Modeling for the Valuation of Large Variable Annuity Portfolios," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(1), pages 40-54, January.
    24. Gan Guojun & Valdez Emiliano A., 2016. "An empirical comparison of some experimental designs for the valuation of large variable annuity portfolios," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-19, December.
    25. Luo, Xiaolin & Shevchenko, Pavel V., 2015. "Valuation of variable annuities with guaranteed minimum withdrawal and death benefits via stochastic control optimization," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 5-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guojun Gan, 2018. "Valuation of Large Variable Annuity Portfolios Using Linear Models with Interactions," Risks, MDPI, Open Access Journal, vol. 6(3), pages 1-19, July.
    2. Dong, Bing & Xu, Wei & Sevic, Aleksandar & Sevic, Zeljko, 2020. "Efficient willow tree method for variable annuities valuation and risk management☆," International Review of Financial Analysis, Elsevier, vol. 68(C).
    3. Lin, X. Sheldon & Yang, Shuai, 2020. "Fast and efficient nested simulation for large variable annuity portfolios: A surrogate modeling approach," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 85-103.
    4. Gan, Guojun, 2013. "Application of data clustering and machine learning in variable annuity valuation," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 795-801.
    5. Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2014. "Optimal initiation of a GLWB in a variable annuity: No Arbitrage approach," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 102-111.
    6. Alexandre Carbonneau, 2020. "Deep Hedging of Long-Term Financial Derivatives," Papers 2007.15128, arXiv.org.
    7. Gan, Guojun & Valdez, Emiliano A., 2017. "Modeling partial Greeks of variable annuities with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 118-134.
    8. Eckhard Platen, 2009. "Real World Pricing of Long Term Contracts," Research Paper Series 262, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Seyed Amir Hejazi & Kenneth R. Jackson, 2016. "Efficient Valuation of SCR via a Neural Network Approach," Papers 1610.01946, arXiv.org.
    10. Li, Yuying & Forsyth, Peter A., 2019. "A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 189-204.
    11. Riley Jones & Adriana Ocejo, 2019. "Assessing Guaranteed Minimum Income Benefits and Rationality of Exercising Reset Options in Variable," Papers 1911.06123, arXiv.org.
    12. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2019. "Gaussian Process Regression for Pricing Variable Annuities with Stochastic Volatility and Interest Rate," Papers 1903.00369, arXiv.org, revised Jul 2019.
    13. Jin Sun & Pavel V. Shevchenko & Man Chung Fung, 2017. "A note on the impact of management fees on the pricing of variable annuity guarantees," Papers 1705.03787, arXiv.org, revised May 2017.
    14. Kouritzin, Michael A. & MacKay, Anne, 2018. "VIX-linked fees for GMWBs via explicit solution simulation methods," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 1-17.
    15. Shevchenko, Pavel V. & Luo, Xiaolin, 2017. "Valuation of variable annuities with Guaranteed Minimum Withdrawal Benefit under stochastic interest rate," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 104-117.
    16. Xu, Wei & Chen, Yuehuan & Coleman, Conrad & Coleman, Thomas F., 2018. "Moment matching machine learning methods for risk management of large variable annuity portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 1-20.
    17. Jacques, Michel, 2003. "A risk management approach to the pricing of a single equity-linked contract," Journal of Pension Economics and Finance, Cambridge University Press, vol. 2(2), pages 159-179, July.
    18. Seyed Amir Hejazi & Kenneth R. Jackson & Guojun Gan, 2017. "A Spatial Interpolation Framework for Efficient Valuation of Large Portfolios of Variable Annuities," Papers 1701.04134, arXiv.org.
    19. Hejazi, Seyed Amir & Jackson, Kenneth R., 2016. "A neural network approach to efficient valuation of large portfolios of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 169-181.
    20. Feng, Runhuan & Huang, Huaxiong, 2016. "Statutory financial reporting for variable annuity guaranteed death benefits: Market practice, mathematical modeling and computation," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 54-64.

    More about this item

    Keywords

    variable annuities; GMxB; hedging; neural networks;
    All these keywords.

    JEL classification:

    • C - Mathematical and Quantitative Methods
    • G0 - Financial Economics - - General
    • G1 - Financial Economics - - General Financial Markets
    • G2 - Financial Economics - - Financial Institutions and Services
    • G3 - Financial Economics - - Corporate Finance and Governance
    • M2 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics
    • M4 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting
    • K2 - Law and Economics - - Regulation and Business Law

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:7:y:2018:i:1:p:1-:d:192723. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.