IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v76y2017icp118-134.html
   My bibliography  Save this article

Modeling partial Greeks of variable annuities with dependence

Author

Listed:
  • Gan, Guojun
  • Valdez, Emiliano A.

Abstract

Dynamic hedging used to mitigate the financial risks associated with large portfolios of variable annuities requires calculating partial dollar deltas on major market indices. Metamodeling approaches have been proposed in the past few years to address the computational issues related to the calculation of partial dollar deltas. In this paper, we investigate whether the additional complication of modeling the dependence between the partial dollar deltas improves the accuracy of the metamodeling approaches. We use several copulas to model the dependence structures of the partial dollar deltas and conduct numerical experiments to compare different metamodels. Despite the evidence of strong dependence in the estimated models, our numerical results show that modeling the dependence structures in the metamodels does not improve the accuracy of the estimations at the portfolio level. This is because the dependence between the partial dollar deltas is well captured by the covariates used in the marginal models. This finding suggests that we should focus more on marginal models than specifying the dependence structure explicitly.

Suggested Citation

  • Gan, Guojun & Valdez, Emiliano A., 2017. "Modeling partial Greeks of variable annuities with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 118-134.
  • Handle: RePEc:eee:insuma:v:76:y:2017:i:c:p:118-134
    DOI: 10.1016/j.insmatheco.2017.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668716304103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2017.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    2. Hejazi, Seyed Amir & Jackson, Kenneth R., 2016. "A neural network approach to efficient valuation of large portfolios of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 169-181.
    3. Andrew Ng & Johnny Li, 2013. "Pricing and Hedging Variable Annuity Guarantees with Multiasset Stochastic Investment Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 17(1), pages 41-62.
    4. Møller, Thomas, 1998. "Risk-Minimizing Hedging Strategies for Unit-Linked Life Insurance Contracts," ASTIN Bulletin, Cambridge University Press, vol. 28(1), pages 17-47, May.
    5. Ledlie, M. C. & Corry, D. P. & Finkelstein, G. S. & Ritchie, A. J. & Su, K. & Wilson, D. C. E., 2008. "Variable Annuities," British Actuarial Journal, Cambridge University Press, vol. 14(2), pages 327-389, July.
    6. Heath Windcliff & Martin Le Roux & Peter Forsyth & Kenneth Vetzal, 2002. "Understanding the Behavior and Hedging of Segregated Funds Offering the Reset Feature," North American Actuarial Journal, Taylor & Francis Journals, vol. 6(2), pages 107-124.
    7. Seyed Amir Hejazi & Kenneth R. Jackson, 2016. "A Neural Network Approach to Efficient Valuation of Large Portfolios of Variable Annuities," Papers 1606.07831, arXiv.org.
    8. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    9. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    10. Garcia, René & Tsafack, Georges, 2011. "Dependence structure and extreme comovements in international equity and bond markets," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1954-1970, August.
    11. Melnikov, Alexander & Tong, Shuo, 2014. "Quantile hedging on equity-linked life insurance contracts with transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 77-88.
    12. Kleinow, Torsten & Willder, Mark, 2007. "The effect of management discretion on hedging and fair valuation of participating policies with maturity guarantees," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 445-458, May.
    13. Ling Hu, 2006. "Dependence patterns across financial markets: a mixed copula approach," Applied Financial Economics, Taylor & Francis Journals, vol. 16(10), pages 717-729.
    14. Li, Jing & Szimayer, Alexander, 2011. "The uncertain mortality intensity framework: Pricing and hedging unit-linked life insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 471-486.
    15. Gan, Guojun, 2013. "Application of data clustering and machine learning in variable annuity valuation," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 795-801.
    16. Forsyth, Peter & Vetzal, Kenneth, 2014. "An optimal stochastic control framework for determining the cost of hedging of variable annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 29-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wing Fung Chong & Haoen Cui & Yuxuan Li, 2021. "Pseudo-Model-Free Hedging for Variable Annuities via Deep Reinforcement Learning," Papers 2107.03340, arXiv.org, revised Oct 2022.
    2. Nguyen, Hang & Sherris, Michael & Villegas, Andrés M. & Ziveyi, Jonathan, 2024. "Scenario selection with LASSO regression for the valuation of variable annuity portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 27-43.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thorsten Moenig, 2021. "Efficient valuation of variable annuity portfolios with dynamic programming," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 1023-1055, December.
    2. Daniel Doyle & Chris Groendyke, 2018. "Using Neural Networks to Price and Hedge Variable Annuity Guarantees," Risks, MDPI, vol. 7(1), pages 1-19, December.
    3. Guojun Gan & Emiliano A. Valdez, 2018. "Nested Stochastic Valuation of Large Variable Annuity Portfolios: Monte Carlo Simulation and Synthetic Datasets," Data, MDPI, vol. 3(3), pages 1-21, September.
    4. Lin, X. Sheldon & Yang, Shuai, 2020. "Fast and efficient nested simulation for large variable annuity portfolios: A surrogate modeling approach," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 85-103.
    5. Gan Guojun & Valdez Emiliano A., 2017. "Valuation of large variable annuity portfolios: Monte Carlo simulation and synthetic datasets," Dependence Modeling, De Gruyter, vol. 5(1), pages 354-374, December.
    6. Wing Fung Chong & Haoen Cui & Yuxuan Li, 2021. "Pseudo-Model-Free Hedging for Variable Annuities via Deep Reinforcement Learning," Papers 2107.03340, arXiv.org, revised Oct 2022.
    7. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    8. Huang, Yiming & Mamon, Rogemar & Xiong, Heng, 2022. "Valuing guaranteed minimum accumulation benefits by a change of numéraire approach," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 1-26.
    9. Seyed Amir Hejazi & Kenneth R. Jackson, 2016. "Efficient Valuation of SCR via a Neural Network Approach," Papers 1610.01946, arXiv.org.
    10. Guojun Gan, 2018. "Valuation of Large Variable Annuity Portfolios Using Linear Models with Interactions," Risks, MDPI, vol. 6(3), pages 1-19, July.
    11. Li, Yuying & Forsyth, Peter A., 2019. "A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 189-204.
    12. Jiang, Ruihong & Saunders, David & Weng, Chengguo, 2023. "Two-phase selection of representative contracts for valuation of large variable annuity portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 293-309.
    13. Ludovic Goudenège & Andrea Molent & Antonino Zanette, 2021. "Gaussian process regression for pricing variable annuities with stochastic volatility and interest rate," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 57-72, June.
    14. Boubaker, Heni & Sghaier, Nadia, 2013. "Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 361-377.
    15. Nguyen, Cuong & Bhatti, M. Ishaq & Komorníková, Magda & Komorník, Jozef, 2016. "Gold price and stock markets nexus under mixed-copulas," Economic Modelling, Elsevier, vol. 58(C), pages 283-292.
    16. Nguyen, Hang & Sherris, Michael & Villegas, Andrés M. & Ziveyi, Jonathan, 2024. "Scenario selection with LASSO regression for the valuation of variable annuity portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 27-43.
    17. Gan, Guojun, 2013. "Application of data clustering and machine learning in variable annuity valuation," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 795-801.
    18. Michał Adam & Piotr Bańbuła & Michał Markun, 2013. "Dependence and contagion between asset prices in Poland and abroad. A copula approach," NBP Working Papers 169, Narodowy Bank Polski.
    19. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    20. Wang, Gu & Zou, Bin, 2021. "Optimal fee structure of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 587-601.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:76:y:2017:i:c:p:118-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.