IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1701.04134.html
   My bibliography  Save this paper

A Spatial Interpolation Framework for Efficient Valuation of Large Portfolios of Variable Annuities

Author

Listed:
  • Seyed Amir Hejazi
  • Kenneth R. Jackson
  • Guojun Gan

Abstract

Variable Annuity (VA) products expose insurance companies to considerable risk because of the guarantees they provide to buyers of these products. Managing and hedging these risks requires insurers to find the value of key risk metrics for a large portfolio of VA products. In practice, many companies rely on nested Monte Carlo (MC) simulations to find key risk metrics. MC simulations are computationally demanding, forcing insurance companies to invest hundreds of thousands of dollars in computational infrastructure per year. Moreover, existing academic methodologies are focused on fair valuation of a single VA contract, exploiting ideas in option theory and regression. In most cases, the computational complexity of these methods surpasses the computational requirements of MC simulations. Therefore, academic methodologies cannot scale well to large portfolios of VA contracts. In this paper, we present a framework for valuing such portfolios based on spatial interpolation. We provide a comprehensive study of this framework and compare existing interpolation schemes. Our numerical results show superior performance, in terms of both computational efficiency and accuracy, for these methods compared to nested MC simulations. We also present insights into the challenge of finding an effective interpolation scheme in this framework, and suggest guidelines that help us build a fully automated scheme that is efficient and accurate.

Suggested Citation

  • Seyed Amir Hejazi & Kenneth R. Jackson & Guojun Gan, 2017. "A Spatial Interpolation Framework for Efficient Valuation of Large Portfolios of Variable Annuities," Papers 1701.04134, arXiv.org.
  • Handle: RePEc:arx:papers:1701.04134
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1701.04134
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Boyle, Phelim P. & Hardy, Mary R., 1997. "Reserving for maturity guarantees: Two approaches," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 113-127, November.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    3. Ron Dembo & Dan Rosen, 1999. "The practice of portfolio replication. A practical overview of forward and inverse problems," Annals of Operations Research, Springer, vol. 85(0), pages 267-284, January.
    4. Boyle, Phelim & Tian, Weidong, 2008. "The design of equity-indexed annuities," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 303-315, December.
    5. Eric R. Ulm, 2006. "The Effect of the Real Option to Transfer on the Value of Guaranteed Minimum Death Benefits," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(1), pages 43-69.
    6. Chen, Z. & Vetzal, K. & Forsyth, P.A., 2008. "The effect of modelling parameters on the value of GMWB guarantees," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 165-173, August.
    7. A. C. Belanger & P. A. Forsyth & G. Labahn, 2009. "Valuing the Guaranteed Minimum Death Benefit Clause with Partial Withdrawals," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(6), pages 451-496.
    8. Carriere, Jacques F., 1996. "Valuation of the early-exercise price for options using simulations and nonparametric regression," Insurance: Mathematics and Economics, Elsevier, vol. 19(1), pages 19-30, December.
    9. Gan, Guojun, 2013. "Application of data clustering and machine learning in variable annuity valuation," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 795-801.
    10. Gerber, Hans U. & Shiu, Elias S.W. & Yang, Hailiang, 2012. "Valuing equity-linked death benefits and other contingent options: A discounted density approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 73-92.
    11. Chi, Yichun & Lin, X. Sheldon, 2012. "Are Flexible Premium Variable Annuities Under-Priced?," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 42(02), pages 559-574, November.
    12. Bauer, Daniel & Reuss, Andreas & Singer, Daniela, 2012. "On the Calculation of the Solvency Capital Requirement Based on Nested Simulations," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 42(02), pages 453-499, November.
    13. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    14. Min Dai & Yue Kuen Kwok & Jianping Zong, 2008. "Guaranteed Minimum Withdrawal Benefit In Variable Annuities," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 595-611.
    15. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    16. Bauer, Daniel & Kling, Alexander & Russ, Jochen, 2008. "A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 38(02), pages 621-651, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:gam:jrisks:v:6:y:2018:i:3:p:71-:d:157549 is not listed on IDEAS

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1701.04134. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.