IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v48y2011i2p205-213.html
   My bibliography  Save this article

Efficient algorithms for basket default swap pricing with multivariate Archimedean copulas

Author

Listed:
  • Choe, Geon Ho
  • Jang, Hyun Jin

Abstract

We introduce a new importance sampling method for pricing basket default swaps employing exchangeable Archimedean copulas and nested Gumbel copulas. We establish more realistic dependence structures than existing copula models for credit risks in the underlying portfolio, and propose an appropriate density for importance sampling by analyzing multivariate Archimedean copulas. To justify efficiency and accuracy of the proposed algorithms, we present numerical examples and compare them with the crude Monte Carlo simulation, and finally show that our proposed estimators produce considerably smaller variances.

Suggested Citation

  • Choe, Geon Ho & Jang, Hyun Jin, 2011. "Efficient algorithms for basket default swap pricing with multivariate Archimedean copulas," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 205-213, March.
  • Handle: RePEc:eee:insuma:v:48:y:2011:i:2:p:205-213
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00120-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mark Joshi & Dherminder Kainth, 2004. "Rapid and accurate development of prices and Greeks for nth to default credit swaps in the Li model," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 266-275.
    2. Niall Whelan, 2004. "Sampling from Archimedean copulas," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 339-352.
    3. Zhiyong Chen & Paul Glasserman, 2008. "Fast Pricing of Basket Default Swaps," Operations Research, INFORMS, vol. 56(2), pages 286-303, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aloui, Riadh & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2013. "A time-varying copula approach to oil and stock market dependence: The case of transition economies," Energy Economics, Elsevier, vol. 39(C), pages 208-221.
    2. Henry Penikas, 2014. "Investment portfolio risk modelling based on hierarchical copulas," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 35(3), pages 18-38.
    3. Aloui, Riadh & Aïssa, Mohamed Safouane Ben & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Dependence and extreme dependence of crude oil and natural gas prices with applications to risk management," Energy Economics, Elsevier, vol. 42(C), pages 332-342.
    4. Lei, Lei & Peng, Yijie & Fu, Michael C. & Hu, Jian-Qiang, 2023. "Copula sensitivity analysis for portfolio credit derivatives," European Journal of Operational Research, Elsevier, vol. 308(1), pages 455-466.
    5. Choe, Geon Ho & Choi, So Eun & Jang, Hyun Jin, 2020. "Assessment of time-varying systemic risk in credit default swap indices: Simultaneity and contagiousness," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    6. Aloui, Riadh & Gupta, Rangan & Miller, Stephen M., 2016. "Uncertainty and crude oil returns," Energy Economics, Elsevier, vol. 55(C), pages 92-100.
    7. Koirala, Krishna H. & Mishra, Ashok K. & D'Antoni, Jeremy M. & Mehlhorn, Joey E., 2015. "Energy prices and agricultural commodity prices: Testing correlation using copulas method," Energy, Elsevier, vol. 81(C), pages 430-436.
    8. Geon Ho Choe & Hyun Jin Jang & Soon Won Kwon, 2015. "A factor contagion model for portfolio credit derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 15(9), pages 1571-1582, September.
    9. Ping Li & Ze†Zheng Li, 2015. "Change Analysis for the Dependence Structure and Dynamic Pricing of Basket Default Swaps," European Financial Management, European Financial Management Association, vol. 21(4), pages 646-671, September.
    10. Kim, Jeong-Hoon & Ma, Yong-Ki & Park, Chan Yeol, 2016. "Joint survival probability via truncated invariant copula," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 68-76.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangwu Liu, 2015. "Simulating Risk Contributions of Credit Portfolios," Operations Research, INFORMS, vol. 63(1), pages 104-121, February.
    2. Huei-Wen Teng & Cheng-Der Fuh & Chun-Chieh Chen, 2016. "On an automatic and optimal importance sampling approach with applications in finance," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1259-1271, August.
    3. Shahid Latif & Slobodan P. Simonovic, 2023. "Trivariate Probabilistic Assessments of the Compound Flooding Events Using the 3-D Fully Nested Archimedean (FNA) Copula in the Semiparametric Distribution Setting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1641-1693, March.
    4. Luca Riccetti, 2013. "A copula–GARCH model for macro asset allocation of a portfolio with commodities," Empirical Economics, Springer, vol. 44(3), pages 1315-1336, June.
    5. Okhrin Ostap & Okhrin Yarema & Schmid Wolfgang, 2013. "Properties of hierarchical Archimedean copulas," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 21-54, March.
    6. repec:hum:wpaper:sfb649dp2009-014 is not listed on IDEAS
    7. Fathi, Abid & Nader, Naifar, 2007. "Price Calibration of basket default swap: Evidence from Japanese market," MPRA Paper 6013, University Library of Munich, Germany.
    8. Kay Giesecke & Baeho Kim, 2011. "Risk Analysis of Collateralized Debt Obligations," Operations Research, INFORMS, vol. 59(1), pages 32-49, February.
    9. Denitsa Stefanova, 2012. "Stock Market Asymmetries: A Copula Diffusion," Tinbergen Institute Discussion Papers 12-125/IV/DSF45, Tinbergen Institute.
    10. Bertrand K. Hassani, 2014. "Risk Appetite in Practice: Vulgaris Mathematica," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01020293, HAL.
    11. Choroś, Barbara & Härdle, Wolfgang Karl & Okhrin, Ostap, 2009. "CDO and HAC," SFB 649 Discussion Papers 2009-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Fengler, Matthias R. & Okhrin, Ostap, 2012. "Realized copula," SFB 649 Discussion Papers 2012-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Dean Fantazzini, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    14. Härdle Wolfgang Karl & Okhrin Ostap & Okhrin Yarema, 2013. "Dynamic structured copula models," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 361-388, December.
    15. Zhu, Wenjun & Wang, Chou-Wen & Tan, Ken Seng, 2016. "Structure and estimation of Lévy subordinated hierarchical Archimedean copulas (LSHAC): Theory and empirical tests," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 20-36.
    16. Liu, X. & Xu, W. & Odening, M., 2011. "Lassen sich Ertragsrisiken in der Landwirtschaft global diversifizieren?," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 46, March.
    17. Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016. "Default probability estimation via pair copula constructions," European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
    18. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    19. Weiß, Gregor N.F. & Scheffer, Marcus, 2015. "Mixture pair-copula-constructions," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 175-191.
    20. Zhiyong Chen & Paul Glasserman, 2008. "Sensitivity estimates for portfolio credit derivatives using Monte Carlo," Finance and Stochastics, Springer, vol. 12(4), pages 507-540, October.
    21. Ostap Okhrin & Martin Odening & Wei Xu, 2013. "Systemic Weather Risk and Crop Insurance: The Case of China," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(2), pages 351-372, June.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:48:y:2011:i:2:p:205-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.