IDEAS home Printed from
   My bibliography  Save this article

Sampling from Archimedean copulas


  • Niall Whelan


We develop sampling algorithms for multivariate Archimedean copulas. For exchangeable copulas, where there is only one generating function, we first analyse the distribution of the copula itself, deriving a number of integral representations and a generating function representation. One of the integral representations is related, by a form of convolution, to the distribution whose Laplace transform yields the copula generating function. In the infinite-dimensional limit there is a direct connection between the distribution of the copula value and the inverse Laplace transform. Armed with these results, we present three sampling algorithms, all of which entail drawing from a one-dimensional distribution and then scaling the result to create random deviates distributed according to the copula. We implement and compare the various methods. For more general cases, in which an N-dimensional Archimedean copula is given by N-1 nested generating functions, we present algorithms in which each new variate is drawn conditional only on the value of the copula of the previously drawn variates. We also discuss the use of composite nested and exchangeable copulas for modelling random variates with a natural hierarchical structure, such as ratings and sectors for obligors in credit baskets.

Suggested Citation

  • Niall Whelan, 2004. "Sampling from Archimedean copulas," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 339-352.
  • Handle: RePEc:taf:quantf:v:4:y:2004:i:3:p:339-352
    DOI: 10.1088/1469-7688/4/3/009

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:4:y:2004:i:3:p:339-352. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.