IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v43y2008i1p134-149.html
   My bibliography  Save this article

Optimal dividend strategies for a risk process under force of interest

Author

Listed:
  • Albrecher, Hansjörg
  • Thonhauser, Stefan

Abstract

In the classical Cramér-Lundberg model in risk theory the problem of maximizing the expected cumulated discounted dividend payments until ruin is a widely discussed topic. In the most general case within that framework it is proved [Gerber, H.U., 1968. Entscheidungskriterien fuer den zusammengesetzten Poisson-prozess. Schweiz. Aktuarver. Mitt. 1, 185-227; Azcue, P., Muler, N., 2005. Optimal reinsurance and dividend distribution policies in the Cramér-Lundberg model. Math. Finance 15 (2) 261-308; Schmidli, H., 2008. Stochastic Control in Insurance. Springer] that the optimal dividend strategy is of band type. In the present paper we discuss this maximization problem in a generalized setting including a constant force of interest in the risk model. The value function is identified in the set of viscosity solutions of the associated Hamilton-Jacobi-Bellman equation and the optimal dividend strategy in this risk model with interest is derived, which in the general case is again of band type and for exponential claim sizes collapses to a barrier strategy. Finally, an example is constructed for Erlang(2)-claim sizes, in which the bands for the optimal strategy are explicitly calculated.

Suggested Citation

  • Albrecher, Hansjörg & Thonhauser, Stefan, 2008. "Optimal dividend strategies for a risk process under force of interest," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 134-149, August.
  • Handle: RePEc:eee:insuma:v:43:y:2008:i:1:p:134-149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00049-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paulsen, Jostein & Gjessing, Hakon K., 1997. "Optimal choice of dividend barriers for a risk process with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 20(3), pages 215-223, October.
    2. Albrecher, Hansjorg & Teugels, Jozef L. & Tichy, Robert F., 2001. "On a gamma series expansion for the time-dependent probability of collective ruin," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 345-355, December.
    3. Kristin Reikvam & Fred Espen Benth & Kenneth Hvistendahl Karlsen, 2001. "Optimal portfolio selection with consumption and nonlinear integro-differential equations with gradient constraint: A viscosity solution approach," Finance and Stochastics, Springer, vol. 5(3), pages 275-303.
    4. Pablo Azcue & Nora Muler, 2005. "Optimal Reinsurance And Dividend Distribution Policies In The Cramér‐Lundberg Model," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 261-308, April.
    5. Paulsen, Jostein, 1993. "Risk theory in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 46(2), pages 327-361, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Chuancun & Yuen, Kam Chuen, 2011. "Optimality of the threshold dividend strategy for the compound Poisson model," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1841-1846.
    2. F. Avram & Z. Palmowski & M. R. Pistorius, 2011. "On Gerber-Shiu functions and optimal dividend distribution for a L\'{e}vy risk process in the presence of a penalty function," Papers 1110.4965, arXiv.org, revised Jun 2015.
    3. Yangmin Zhong & Huaping Huang, 2023. "Cash Flow Optimization on Insurance: An Application of Fixed-Point Theory," Mathematics, MDPI, vol. 11(4), pages 1-12, February.
    4. Christian Hipp, 2018. "Company Value with Ruin Constraint in a Discrete Model," Risks, MDPI, vol. 6(1), pages 1-14, January.
    5. Irmina Czarna & Zbigniew Palmowski, 2010. "Dividend problem with Parisian delay for a spectrally negative L\'evy risk process," Papers 1004.3310, arXiv.org, revised Oct 2011.
    6. Irmina Czarna & Zbigniew Palmowski, 2014. "Dividend Problem with Parisian Delay for a Spectrally Negative Lévy Risk Process," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 239-256, April.
    7. Xu, Ran & Woo, Jae-Kyung, 2020. "Optimal dividend and capital injection strategy with a penalty payment at ruin: Restricted dividend payments," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 1-16.
    8. Chuancun Yin, 2013. "Optimal dividend problem for a generalized compound Poisson risk model," Papers 1305.1747, arXiv.org, revised Feb 2014.
    9. Jiaen Xu & Chunwei Wang & Naidan Deng & Shujing Wang, 2023. "Numerical Method for a Risk Model with Two-Sided Jumps and Proportional Investment," Mathematics, MDPI, vol. 11(7), pages 1-22, March.
    10. Jiaqin Wei & Hailiang Yang & Rongming Wang, 2010. "Classical and Impulse Control for the Optimization of Dividend and Proportional Reinsurance Policies with Regime Switching," Journal of Optimization Theory and Applications, Springer, vol. 147(2), pages 358-377, November.
    11. Ran Xu & Wenyuan Wang & Jose Garrido, 2022. "Optimal Dividend Strategy Under Parisian Ruin with Affine Penalty," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1385-1409, September.
    12. Martin Hunting & Jostein Paulsen, 2013. "Optimal dividend policies with transaction costs for a class of jump-diffusion processes," Finance and Stochastics, Springer, vol. 17(1), pages 73-106, January.
    13. Ying Shen & Chuancun Yin & Kam Chuen Yuen, 2011. "Alternative approach to the optimality of the threshold strategy for spectrally negative Levy processes," Papers 1101.0446, arXiv.org, revised Feb 2014.
    14. Zhu, Jinxia & Chen, Feng, 2015. "Dividend optimization under reserve constraints for the Cramér–Lundberg model compounded by force of interest," Economic Modelling, Elsevier, vol. 46(C), pages 142-156.
    15. Linlin Tian & Xiaoyi Zhang, 2018. "Optimal Dividend of Compound Poisson Process under a Stochastic Interest Rate," Papers 1807.08081, arXiv.org.
    16. Yu, Wenguang, 2013. "Some results on absolute ruin in the perturbed insurance risk model with investment and debit interests," Economic Modelling, Elsevier, vol. 31(C), pages 625-634.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Chuancun & Wen, Yuzhen, 2013. "An extension of Paulsen–Gjessing’s risk model with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 469-476.
    2. Runhuan Feng & Hans Volkmer & Shuaiqi Zhang & Chao Zhu, 2011. "Optimal Dividend Payments for the Piecewise-Deterministic Poisson Risk Model," Papers 1106.2781, arXiv.org, revised Nov 2014.
    3. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    4. Jiaqin Wei & Hailiang Yang & Rongming Wang, 2010. "Classical and Impulse Control for the Optimization of Dividend and Proportional Reinsurance Policies with Regime Switching," Journal of Optimization Theory and Applications, Springer, vol. 147(2), pages 358-377, November.
    5. Zhu, Jinxia & Chen, Feng, 2015. "Dividend optimization under reserve constraints for the Cramér–Lundberg model compounded by force of interest," Economic Modelling, Elsevier, vol. 46(C), pages 142-156.
    6. Linlin Tian & Lihua Bai, 2020. "Minimizing the Ruin Probability under the Sparre Andersen Model," Papers 2004.08124, arXiv.org.
    7. Azcue, Pablo & Muler, Nora, 2012. "Optimal dividend policies for compound Poisson processes: The case of bounded dividend rates," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 26-42.
    8. Chuancun Yin & Yuzhen Wen, 2013. "An extension of Paulsen-Gjessing's risk model with stochastic return on investments," Papers 1302.6757, arXiv.org.
    9. Diko, Peter & Usábel, Miguel, 2011. "A numerical method for the expected penalty-reward function in a Markov-modulated jump-diffusion process," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 126-131, July.
    10. Linlin Tian & Lihua Bai & Junyi Guo, 2020. "Optimal Singular Dividend Problem Under the Sparre Andersen Model," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 603-626, February.
    11. Xiaoqing Liang & Zbigniew Palmowski, 2016. "A note on optimal expected utility of dividend payments with proportional reinsurance," Papers 1605.06849, arXiv.org, revised May 2017.
    12. Guan, Huiqi & Liang, Zongxia, 2014. "Viscosity solution and impulse control of the diffusion model with reinsurance and fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 109-122.
    13. Yuri Kabanov & Platon Promyslov, 2023. "Ruin probabilities for a Sparre Andersen model with investments: the case of annuity payments," Finance and Stochastics, Springer, vol. 27(4), pages 887-902, October.
    14. Liang, Zhibin & Young, Virginia R., 2012. "Dividends and reinsurance under a penalty for ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 437-445.
    15. Wenyuan Wang & Yuebao Wang & Ping Chen & Xueyuan Wu, 2022. "Dividend and Capital Injection Optimization with Transaction Cost for Lévy Risk Processes," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 924-965, September.
    16. Yin, Chuancun & Wen, Yuzhen, 2013. "Optimal dividend problem with a terminal value for spectrally positive Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 769-773.
    17. Nyrhinen, Harri, 2007. "Convex large deviation rate functions under mixtures of linear transformations, with an application to ruin theory," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 947-959, July.
    18. Pablo Azcue & Nora Muler, 2013. "Minimizing the ruin probability allowing investments in two assets: a two-dimensional problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(2), pages 177-206, April.
    19. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    20. Julia Eisenberg & Paul Kruhner, 2018. "Suboptimal Control of Dividends under Exponential Utility," Papers 1809.01983, arXiv.org, revised Jan 2019.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:43:y:2008:i:1:p:134-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.