IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1004.3310.html
   My bibliography  Save this paper

Dividend problem with Parisian delay for a spectrally negative L\'evy risk process

Author

Listed:
  • Irmina Czarna
  • Zbigniew Palmowski

Abstract

In this paper we consider dividend problem for an insurance company whose risk evolves as a spectrally negative L\'{e}vy process (in the absence of dividend payments) when Parisian delay is applied. The objective function is given by the cumulative discounted dividends received until the moment of ruin when so-called barrier strategy is applied. Additionally we will consider two possibilities of delay. In the first scenario ruin happens when the surplus process stays below zero longer than fixed amount of time $\zeta>0$. In the second case there is a time lag $d$ between decision of paying dividends and its implementation.

Suggested Citation

  • Irmina Czarna & Zbigniew Palmowski, 2010. "Dividend problem with Parisian delay for a spectrally negative L\'evy risk process," Papers 1004.3310, arXiv.org, revised Oct 2011.
  • Handle: RePEc:arx:papers:1004.3310
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1004.3310
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dassios, Angelos & Wu, Shanle, 2009. "On barrier strategy dividends with Parisian implementation delay for classical surplus processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 195-202, October.
    2. Irmina Czarna & Zbigniew Palmowski, 2010. "Ruin probability with Parisian delay for a spectrally negative L\'evy risk process," Papers 1003.4299, arXiv.org, revised Apr 2010.
    3. Albrecher, Hansjörg & Thonhauser, Stefan, 2008. "Optimal dividend strategies for a risk process under force of interest," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 134-149, August.
    4. Hans U. Gerber, 1972. "Games of Economic Survival with Discrete- and Continuous-Income Processes," Operations Research, INFORMS, vol. 20(1), pages 37-45, February.
    5. Dufresne, Francois & Gerber, Hans U., 1991. "Risk theory for the compound Poisson process that is perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 10(1), pages 51-59, March.
    6. Dickson, David C.M. & Waters, Howard R., 2004. "Some Optimal Dividends Problems," ASTIN Bulletin, Cambridge University Press, vol. 34(1), pages 49-74, May.
    7. Bjarne Højgaard & Søren Asmussen & Michael Taksar, 2000. "Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation," Finance and Stochastics, Springer, vol. 4(3), pages 299-324.
    8. Marc Hallin, 1978. "Band strategies: the random walk of reserves," ULB Institutional Repository 2013/1989, ULB -- Universite Libre de Bruxelles.
    9. Thonhauser, Stefan & Albrecher, Hansjorg, 2007. "Dividend maximization under consideration of the time value of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 163-184, July.
    10. Florin Avram & Zbigniew Palmowski & Martijn R. Pistorius, 2007. "On the optimal dividend problem for a spectrally negative L\'{e}vy process," Papers math/0702893, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujuan Huang & Wenguang Yu, 2013. "Studies on a Double Poisson-Geometric Insurance Risk Model with Interference," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-8, April.
    2. Guérin, Hélène & Renaud, Jean-François, 2017. "On the distribution of cumulative Parisian ruin," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 116-123.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. Avram & Z. Palmowski & M. R. Pistorius, 2011. "On Gerber-Shiu functions and optimal dividend distribution for a L\'{e}vy risk process in the presence of a penalty function," Papers 1110.4965, arXiv.org, revised Jun 2015.
    2. Irmina Czarna & Zbigniew Palmowski, 2014. "Dividend Problem with Parisian Delay for a Spectrally Negative Lévy Risk Process," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 239-256, April.
    3. Ran Xu & Wenyuan Wang & Jose Garrido, 2022. "Optimal Dividend Strategy Under Parisian Ruin with Affine Penalty," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1385-1409, September.
    4. Liang, Zhibin & Young, Virginia R., 2012. "Dividends and reinsurance under a penalty for ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 437-445.
    5. Hernández, Camilo & Junca, Mauricio & Moreno-Franco, Harold, 2018. "A time of ruin constrained optimal dividend problem for spectrally one-sided Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 57-68.
    6. Xu, Ran & Woo, Jae-Kyung, 2020. "Optimal dividend and capital injection strategy with a penalty payment at ruin: Restricted dividend payments," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 1-16.
    7. Zhou, Zhou & Jin, Zhuo, 2020. "Optimal equilibrium barrier strategies for time-inconsistent dividend problems in discrete time," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 100-108.
    8. Camilo Hernandez & Mauricio Junca & Harold Moreno-Franco, 2016. "A time of ruin constrained optimal dividend problem for spectrally one-sided L\'evy processes," Papers 1608.02550, arXiv.org, revised May 2017.
    9. Yangmin Zhong & Huaping Huang, 2023. "Cash Flow Optimization on Insurance: An Application of Fixed-Point Theory," Mathematics, MDPI, vol. 11(4), pages 1-12, February.
    10. Zhang, Aili & Li, Shuanming & Wang, Wenyuan, 2023. "A scale function based approach for solving integral-differential equations in insurance risk models," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    11. Wenyuan Wang & Yuebao Wang & Ping Chen & Xueyuan Wu, 2022. "Dividend and Capital Injection Optimization with Transaction Cost for Lévy Risk Processes," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 924-965, September.
    12. Ewa Marciniak & Zbigniew Palmowski, 2016. "On the Optimal Dividend Problem for Insurance Risk Models with Surplus-Dependent Premiums," Papers 1604.06892, arXiv.org.
    13. Yin, Chuancun & Wen, Yuzhen, 2013. "Optimal dividend problem with a terminal value for spectrally positive Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 769-773.
    14. Ewa Marciniak & Zbigniew Palmowski, 2016. "On the Optimal Dividend Problem for Insurance Risk Models with Surplus-Dependent Premiums," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 723-742, February.
    15. Wenyuan Wang & Xueyuan Wu & Cheng Chi, 2019. "Optimal implementation delay of taxation with trade-off for L\'{e}vy risk Processes," Papers 1910.08158, arXiv.org.
    16. Martin Hunting & Jostein Paulsen, 2013. "Optimal dividend policies with transaction costs for a class of jump-diffusion processes," Finance and Stochastics, Springer, vol. 17(1), pages 73-106, January.
    17. Ying Shen & Chuancun Yin & Kam Chuen Yuen, 2011. "Alternative approach to the optimality of the threshold strategy for spectrally negative Levy processes," Papers 1101.0446, arXiv.org, revised Feb 2014.
    18. Zhuo Jin & Zuo Quan Xu & Bin Zou, 2020. "A Perturbation Approach to Optimal Investment, Liability Ratio, and Dividend Strategies," Papers 2012.06703, arXiv.org, revised May 2021.
    19. Pelsser, Antoon A.J. & Laeven, Roger J.A., 2013. "Optimal dividends and ALM under unhedgeable risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 515-523.
    20. Yao, Dingjun & Yang, Hailiang & Wang, Rongming, 2014. "Optimal risk and dividend control problem with fixed costs and salvage value: Variance premium principle," Economic Modelling, Elsevier, vol. 37(C), pages 53-64.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1004.3310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.