IDEAS home Printed from
   My bibliography  Save this paper

Ruin probability with Parisian delay for a spectrally negative L\'evy risk process


  • Irmina Czarna
  • Zbigniew Palmowski


In this paper we analyze so-called Parisian ruin probability that happens when surplus process stays below zero longer than fixed amount of time $\zeta>0$. We focus on general spectrally negative L\'{e}vy insurance risk process. For this class of processes we identify expression for ruin probability in terms of some other quantities that could be possibly calculated explicitly in many models. We find its Cram\'{e}r-type and convolution-equivalent asymptotics when reserves tends to infinity. Finally, we analyze few explicit examples.

Suggested Citation

  • Irmina Czarna & Zbigniew Palmowski, 2010. "Ruin probability with Parisian delay for a spectrally negative L\'evy risk process," Papers 1003.4299,, revised Apr 2010.
  • Handle: RePEc:arx:papers:1003.4299

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Dufresne, Francois & Gerber, Hans U., 1991. "Risk theory for the compound Poisson process that is perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 10(1), pages 51-59, March.
    2. Bertoin, J. & Doney, R. A., 1994. "Cramer's estimate for Lévy processes," Statistics & Probability Letters, Elsevier, vol. 21(5), pages 363-365, December.
    3. Wang, Guojing, 2001. "A decomposition of the ruin probability for the risk process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 49-59, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Irmina Czarna & Zbigniew Palmowski, 2010. "Dividend problem with Parisian delay for a spectrally negative L\'evy risk process," Papers 1004.3310,, revised Oct 2011.
    2. Landriault, David & Renaud, Jean-François & Zhou, Xiaowen, 2011. "Occupation times of spectrally negative Lévy processes with applications," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2629-2641, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1003.4299. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.