IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v121y2011i11p2629-2641.html
   My bibliography  Save this article

Occupation times of spectrally negative Lévy processes with applications

Author

Listed:
  • Landriault, David
  • Renaud, Jean-François
  • Zhou, Xiaowen

Abstract

In this paper, we compute the Laplace transform of occupation times (of the negative half-line) of spectrally negative Lévy processes. Our results are extensions of known results for standard Brownian motion and jump-diffusion processes. The results are expressed in terms of the so-called scale functions of the spectrally negative Lévy process and its Laplace exponent. Applications to insurance risk models are also presented.

Suggested Citation

  • Landriault, David & Renaud, Jean-François & Zhou, Xiaowen, 2011. "Occupation times of spectrally negative Lévy processes with applications," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2629-2641, November.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:11:p:2629-2641
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414911001797
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loeffen, Ronnie L. & Renaud, Jean-François, 2010. "De Finetti's optimal dividends problem with an affine penalty function at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 98-108, February.
    2. Irmina Czarna & Zbigniew Palmowski, 2010. "Ruin probability with Parisian delay for a spectrally negative L\'evy risk process," Papers 1003.4299, arXiv.org, revised Apr 2010.
    3. Romain Biard & Stéphane Loisel & Claudio Macci & Noel Veraverbeke, 2010. "Asymptotic behavior of the finite-time expected time-integrated negative part of some risk processes and optimal reserve allocation," Post-Print hal-00372525, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kathrin Glau, 2015. "Feynman-Kac formula for L\'evy processes with discontinuous killing rate," Papers 1502.07531, arXiv.org, revised Nov 2015.
    2. Jin, Can & Li, Shuanming & Wu, Xueyuan, 2016. "On the occupation times in a delayed Sparre Andersen risk model with exponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 304-316.
    3. Li, Yingqiu & Zhou, Xiaowen & Zhu, Na, 2015. "Two-sided discounted potential measures for spectrally negative Lévy processes," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 67-76.
    4. repec:eee:insuma:v:74:y:2017:i:c:p:153-163 is not listed on IDEAS
    5. Zhou, Jiang & Wu, Lan, 2015. "The time of deducting fees for variable annuities under the state-dependent fee structure," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 125-134.
    6. Loeffen, Ronnie L. & Renaud, Jean-François & Zhou, Xiaowen, 2014. "Occupation times of intervals until first passage times for spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1408-1435.
    7. Czarna, Irmina & Renaud, Jean-François, 2016. "A note on Parisian ruin with an ultimate bankruptcy level for Lévy insurance risk processes," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 54-61.
    8. Cui, Zhenyu & Nguyen, Duy, 2016. "Omega diffusion risk model with surplus-dependent tax and capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 150-161.
    9. Li, Yingqiu & Zhou, Xiaowen, 2014. "On pre-exit joint occupation times for spectrally negative Lévy processes," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 48-55.
    10. Hansjörg Albrecher & Jevgenijs Ivanovs, 2013. "A Risk Model with an Observer in a Markov Environment," Risks, MDPI, Open Access Journal, vol. 1(3), pages 1-14, November.
    11. Guérin, Hélène & Renaud, Jean-François, 2017. "On the distribution of cumulative Parisian ruin," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 116-123.
    12. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
    13. Xuebing Kuang & Xiaowen Zhou, 2017. "n -Dimensional Laplace Transforms of Occupation Times for Spectrally Negative Lévy Processes," Risks, MDPI, Open Access Journal, vol. 5(1), pages 1-14, January.
    14. Albrecher, Hansjörg & Ivanovs, Jevgenijs, 2017. "Strikingly simple identities relating exit problems for Lévy processes under continuous and Poisson observations," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 643-656.
    15. repec:eee:insuma:v:75:y:2017:i:c:p:82-89 is not listed on IDEAS
    16. Mohamed Amine Lkabous & Irmina Czarna & Jean-Franc{c}ois Renaud, 2016. "Parisian ruin for a refracted L\'evy process," Papers 1603.09324, arXiv.org, revised Mar 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:11:p:2629-2641. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.