IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v7y2013i2p469-477.html
   My bibliography  Save this article

Quantifying the interdisciplinarity of scientific journals and fields

Author

Listed:
  • Silva, F.N.
  • Rodrigues, F.A.
  • Oliveira, O.N.
  • da F. Costa, L.

Abstract

There is an overall perception of increased interdisciplinarity in science, but this is difficult to confirm quantitatively owing to the lack of adequate methods to evaluate subjective phenomena. This is no different from the difficulties in establishing quantitative relationships in human and social sciences. In this paper we quantified the interdisciplinarity of scientific journals and science fields by using an entropy measurement based on the diversity of the subject categories of journals citing a specific journal. The methodology consisted in building citation networks using the Journal Citation Reports® database, in which the nodes were journals and edges were established based on citations among journals. The overall network for the 11-year period (1999–2009) studied was small-world and followed a power-law with exponential cutoff distribution with regard to the in-strength. Upon visualizing the network topology an overall structure of the various science fields could be inferred, especially their interconnections. We confirmed quantitatively that science fields are becoming increasingly interdisciplinary, with the degree of interdisplinarity (i.e. entropy) correlating strongly with the in-strength of journals and with the impact factor.

Suggested Citation

  • Silva, F.N. & Rodrigues, F.A. & Oliveira, O.N. & da F. Costa, L., 2013. "Quantifying the interdisciplinarity of scientific journals and fields," Journal of Informetrics, Elsevier, vol. 7(2), pages 469-477.
  • Handle: RePEc:eee:infome:v:7:y:2013:i:2:p:469-477
    DOI: 10.1016/j.joi.2013.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157713000096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2013.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin W. Boyack, 2009. "Using detailed maps of science to identify potential collaborations," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(1), pages 27-44, April.
    2. Stephen Carley & Alan L. Porter, 2012. "A forward diversity index," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 407-427, February.
    3. Chen, Lisha & Buja, Andreas, 2009. "Local Multidimensional Scaling for Nonlinear Dimension Reduction, Graph Drawing, and Proximity Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 209-219.
    4. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    5. Kevin W. Boyack & Richard Klavans & Katy Börner, 2005. "Mapping the backbone of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(3), pages 351-374, August.
    6. Loet Leydesdorff & Ismael Rafols, 2009. "A global map of science based on the ISI subject categories," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 348-362, February.
    7. Costa, Luciano da Fontoura & Rodrigues Tognetti, Marilza A. & Silva, Filipi Nascimento, 2008. "Concentric characterization and classification of complex network nodes: Application to an institutional collaboration network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6201-6214.
    8. Loet Leydesdorff, 2007. "Mapping interdisciplinarity at the interfaces between the Science Citation Index and the Social Science Citation Index," Scientometrics, Springer;Akadémiai Kiadó, vol. 71(3), pages 391-405, June.
    9. Alan L. Porter & Ismael Rafols, 2009. "Is science becoming more interdisciplinary? Measuring and mapping six research fields over time," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 719-745, December.
    10. Silva, F.N. & Viana, M.P. & Travençolo, B.A.N. & Costa, L. da F., 2011. "Investigating relationships within and between category networks in Wikipedia," Journal of Informetrics, Elsevier, vol. 5(3), pages 431-438.
    11. Hajime Eto, 2003. "Interdisciplinary information input and output of a nano-technology project," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(1), pages 5-33, September.
    12. Loet Leydesdorff, 2007. "Betweenness centrality as an indicator of the interdisciplinarity of scientific journals," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(9), pages 1303-1319, July.
    13. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingwei Zheng & Ke Zhang & Boya Han & Jiayi Hou, 2023. "Research Interdisciplinarity and Citation Impact: A Network Analysis of Social Networking Sites Research," SAGE Open, , vol. 13(3), pages 21582440231, August.
    2. Jingjing Ren & Fang Wang & Minglu Li, 2023. "Dynamics and characteristics of interdisciplinary research in scientific breakthroughs: case studies of Nobel-winning research in the past 120 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4383-4419, August.
    3. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2019. "On the interplay between normalisation, bias, and performance of paper impact metrics," Journal of Informetrics, Elsevier, vol. 13(1), pages 270-290.
    4. Brito, Ana C.M. & Silva, Filipi N. & Amancio, Diego R., 2021. "Associations between author-level metrics in subsequent time periods," Journal of Informetrics, Elsevier, vol. 15(4).
    5. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.
    6. Stepanić Josip & Zoroja Jovana & Šimičević Vanja, 2017. "Case Study in Interdisciplinary Scientific Communication: A Decade of the INDECS Journal," Business Systems Research, Sciendo, vol. 8(2), pages 101-114, September.
    7. Shuto Miyashita & Shintaro Sengoku, 2021. "Scientometrics for management of science: collaboration and knowledge structures and complexities in an interdisciplinary research project," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7419-7444, September.
    8. Maribel Blasco, 2022. "“We’re Just Geeks”: Disciplinary Identifications Among Business Students and Their Implications for Personal Responsibility," Journal of Business Ethics, Springer, vol. 178(1), pages 279-302, June.
    9. Hric, Darko & Kaski, Kimmo & Kivelä, Mikko, 2018. "Stochastic block model reveals maps of citation patterns and their evolution in time," Journal of Informetrics, Elsevier, vol. 12(3), pages 757-783.
    10. Chiara Carusi & Giuseppe Bianchi, 2020. "A look at interdisciplinarity using bipartite scholar/journal networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 867-894, February.
    11. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2019. "Globalised vs averaged: Bias and ranking performance on the author level," Journal of Informetrics, Elsevier, vol. 13(1), pages 299-313.
    12. Silva, Filipi N. & Amancio, Diego R. & Bardosova, Maria & Costa, Luciano da F. & Oliveira, Osvaldo N., 2016. "Using network science and text analytics to produce surveys in a scientific topic," Journal of Informetrics, Elsevier, vol. 10(2), pages 487-502.
    13. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    14. Antonio Protic & Biserka Runje & Josip Stepanic, 2013. "Distribution of Citations in one Volume of a Journal," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(2), pages 227-237.
    15. Juan María Hernández & Pablo Dorta-González, 2020. "Interdisciplinarity Metric Based on the Co-Citation Network," Mathematics, MDPI, vol. 8(4), pages 1-8, April.
    16. Vancraeynest, Bram & Pham, Hoang-Son & Ali-Eldin, Amr, 2024. "A new approach to computing the distances between research disciplines based on researcher collaborations and similarity measurement techniques," Journal of Informetrics, Elsevier, vol. 18(3).
    17. Qing Ke, 2023. "Interdisciplinary research and technological impact: evidence from biomedicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2035-2077, April.
    18. Wang L. & Coccia M., 2015. "Evolutionary convergence of the patterns of international research collaborations across scientific fields," MERIT Working Papers 2015-011, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juste Raimbault, 2019. "Exploration of an interdisciplinary scientific landscape," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 617-641, May.
    2. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Investigating the dynamics of interdisciplinary evolution in technology developments," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 12-23.
    3. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    4. Ricardo Arencibia-Jorge & Rosa Lidia Vega-Almeida & José Luis Jiménez-Andrade & Humberto Carrillo-Calvet, 2022. "Evolutionary stages and multidisciplinary nature of artificial intelligence research," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5139-5158, September.
    5. Xuefeng Wang & Zhinan Wang & Ying Huang & Yun Chen & Yi Zhang & Huichao Ren & Rongrong Li & Jinhui Pang, 2017. "Measuring interdisciplinarity of a research system: detecting distinction between publication categories and citation categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 2023-2039, June.
    6. Ismael Rafols & Alan Porter & Loet Leydesdorff, 2009. "Overlay Maps of Science: a New Tool for Research Policy," SPRU Working Paper Series 179, SPRU - Science Policy Research Unit, University of Sussex Business School.
    7. Andrea Bonaccorsi & Nicola Melluso & Francesco Alessandro Massucci, 2022. "Exploring the antecedents of interdisciplinarity at the European Research Council: a topic modeling approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 6961-6991, December.
    8. Giulio Giacomo Cantone, 2024. "How to measure interdisciplinary research? A systemic design for the model of measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4937-4982, August.
    9. Chiara Carusi & Giuseppe Bianchi, 2020. "A look at interdisciplinarity using bipartite scholar/journal networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 867-894, February.
    10. Silva, F.N. & Viana, M.P. & Travençolo, B.A.N. & Costa, L. da F., 2011. "Investigating relationships within and between category networks in Wikipedia," Journal of Informetrics, Elsevier, vol. 5(3), pages 431-438.
    11. Jon Garner & Alan L. Porter & Nils C. Newman, 2014. "Distance and velocity measures: using citations to determine breadth and speed of research impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 687-703, September.
    12. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    13. Yi Bu & Mengyang Li & Weiye Gu & Win‐bin Huang, 2021. "Topic diversity: A discipline scheme‐free diversity measurement for journals," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(5), pages 523-539, May.
    14. Yan, Erjia & Ding, Ying & Cronin, Blaise & Leydesdorff, Loet, 2013. "A bird's-eye view of scientific trading: Dependency relations among fields of science," Journal of Informetrics, Elsevier, vol. 7(2), pages 249-264.
    15. Shunshun Shi & Wenyu Zhang & Shuai Zhang & Jie Chen, 2018. "Does prestige dimension influence the interdisciplinary performance of scientific entities in knowledge flow? Evidence from the e-government field," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 1237-1264, November.
    16. Karmen Stopar & Damjana Drobne & Klemen Eler & Tomaz Bartol, 2016. "Citation analysis and mapping of nanoscience and nanotechnology: identifying the scope and interdisciplinarity of research," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 563-581, February.
    17. Sándor Soós & George Kampis, 2012. "Beyond the basemap of science: mapping multiple structures in research portfolios: evidence from Hungary," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 869-891, December.
    18. Kose, Toshihiro & Sakata, Ichiro, 2019. "Identifying technology convergence in the field of robotics research," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 751-766.
    19. Silva, Filipi N. & Amancio, Diego R. & Bardosova, Maria & Costa, Luciano da F. & Oliveira, Osvaldo N., 2016. "Using network science and text analytics to produce surveys in a scientific topic," Journal of Informetrics, Elsevier, vol. 10(2), pages 487-502.
    20. Stephen Carley & Alan L. Porter, 2012. "A forward diversity index," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 407-427, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:7:y:2013:i:2:p:469-477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.