IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v5y2011i3p431-438.html
   My bibliography  Save this article

Investigating relationships within and between category networks in Wikipedia

Author

Listed:
  • Silva, F.N.
  • Viana, M.P.
  • Travençolo, B.A.N.
  • Costa, L. da F.

Abstract

This work maps and analyses cross-citations in the areas of Biology, Mathematics, Physics and Medicine in the English version of Wikipedia, which are represented as an undirected complex network where the entries correspond to nodes and the citations among the entries are mapped as edges. We found a high value of clustering coefficient for the areas of Biology and Medicine, and a small value for Mathematics and Physics. The topological organization is also different for each network, including a modular structure for Biology and Medicine, a sparse structure for Mathematics and a dense core for Physics. The networks have degree distributions that can be approximated by a power-law with a cut-off. The assortativity of the isolated networks has also been investigated and the results indicate distinct patterns for each subject. We estimated the betweenness centrality of each node considering the full Wikipedia network, which contains the nodes of the four subjects and the edges between them. In addition, the average shortest path length between the subjects revealed a close relationship between the subjects of Biology and Physics, and also between Medicine and Physics. Our results indicate that the analysis of the full Wikipedia network cannot predict the behavior of the isolated categories since their properties can be very different from those observed in the full network.

Suggested Citation

  • Silva, F.N. & Viana, M.P. & Travençolo, B.A.N. & Costa, L. da F., 2011. "Investigating relationships within and between category networks in Wikipedia," Journal of Informetrics, Elsevier, vol. 5(3), pages 431-438.
  • Handle: RePEc:eee:infome:v:5:y:2011:i:3:p:431-438
    DOI: 10.1016/j.joi.2011.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157711000344
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2011.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin W. Boyack, 2009. "Using detailed maps of science to identify potential collaborations," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(1), pages 27-44, April.
    2. Johan Bollen & Herbert Van de Sompel & Aric Hagberg & Luis Bettencourt & Ryan Chute & Marko A Rodriguez & Lyudmila Balakireva, 2009. "Clickstream Data Yields High-Resolution Maps of Science," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-11, March.
    3. Kevin W. Boyack & Richard Klavans & Katy Börner, 2005. "Mapping the backbone of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(3), pages 351-374, August.
    4. Richard Klavans & Kevin W. Boyack, 2009. "Toward a consensus map of science," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(3), pages 455-476, March.
    5. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    6. Loet Leydesdorff & Ismael Rafols, 2009. "A global map of science based on the ISI subject categories," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 348-362, February.
    7. Alan L. Porter & Ismael Rafols, 2009. "Is science becoming more interdisciplinary? Measuring and mapping six research fields over time," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 719-745, December.
    8. Richard Klavans & Kevin W. Boyack, 2008. "Thought leadership: A new indicator for national and institutional comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(2), pages 239-250, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silva, F.N. & Rodrigues, F.A. & Oliveira, O.N. & da F. Costa, L., 2013. "Quantifying the interdisciplinarity of scientific journals and fields," Journal of Informetrics, Elsevier, vol. 7(2), pages 469-477.
    2. Silva, Filipi N. & Amancio, Diego R. & Bardosova, Maria & Costa, Luciano da F. & Oliveira, Osvaldo N., 2016. "Using network science and text analytics to produce surveys in a scientific topic," Journal of Informetrics, Elsevier, vol. 10(2), pages 487-502.
    3. Nicolas Jullien, 2012. "What We Know About Wikipedia: A Review of the Literature Analyzing the Project(s)," Post-Print hal-00857208, HAL.
    4. Amancio, Diego R. & Oliveira Jr., Osvaldo N. & Costa, Luciano da F., 2012. "Structure–semantics interplay in complex networks and its effects on the predictability of similarity in texts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4406-4419.
    5. Cui, Xue-Mei & Yoon, Chang No & Youn, Hyejin & Lee, Sang Hoon & Jung, Jean S. & Han, Seung Kee, 2017. "Dynamic burstiness of word-occurrence and network modularity in textbook systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 103-110.
    6. Torres-Salinas, Daniel & Romero-Frías, Esteban & Arroyo-Machado, Wenceslao, 2019. "Mapping the backbone of the Humanities through the eyes of Wikipedia," Journal of Informetrics, Elsevier, vol. 13(3), pages 793-803.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ismael Rafols & Alan Porter & Loet Leydesdorff, 2009. "Overlay Maps of Science: a New Tool for Research Policy," SPRU Working Paper Series 179, SPRU - Science Policy Research Unit, University of Sussex Business School.
    2. Silva, F.N. & Rodrigues, F.A. & Oliveira, O.N. & da F. Costa, L., 2013. "Quantifying the interdisciplinarity of scientific journals and fields," Journal of Informetrics, Elsevier, vol. 7(2), pages 469-477.
    3. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.
    4. Leydesdorff, Loet & Rafols, Ismael, 2011. "Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations," Journal of Informetrics, Elsevier, vol. 5(1), pages 87-100.
    5. Yan, Erjia & Ding, Ying & Cronin, Blaise & Leydesdorff, Loet, 2013. "A bird's-eye view of scientific trading: Dependency relations among fields of science," Journal of Informetrics, Elsevier, vol. 7(2), pages 249-264.
    6. Hric, Darko & Kaski, Kimmo & Kivelä, Mikko, 2018. "Stochastic block model reveals maps of citation patterns and their evolution in time," Journal of Informetrics, Elsevier, vol. 12(3), pages 757-783.
    7. Chiara Carusi & Giuseppe Bianchi, 2020. "A look at interdisciplinarity using bipartite scholar/journal networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 867-894, February.
    8. Silva, Filipi N. & Amancio, Diego R. & Bardosova, Maria & Costa, Luciano da F. & Oliveira, Osvaldo N., 2016. "Using network science and text analytics to produce surveys in a scientific topic," Journal of Informetrics, Elsevier, vol. 10(2), pages 487-502.
    9. Andrea Bonaccorsi & Filippo Chiarello & Gualtiero Fantoni, 2021. "Impact for whom? Mapping the users of public research with lexicon-based text mining," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1745-1774, February.
    10. Jielan Ding & Per Ahlgren & Liying Yang & Ting Yue, 2018. "Disciplinary structures in Nature, Science and PNAS: journal and country levels," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1817-1852, September.
    11. Carusi, Chiara & Bianchi, Giuseppe, 2019. "Scientific community detection via bipartite scholar/journal graph co-clustering," Journal of Informetrics, Elsevier, vol. 13(1), pages 354-386.
    12. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    13. Miguel R. Guevara & Dominik Hartmann & Manuel Aristarán & Marcelo Mendoza & César A. Hidalgo, 2016. "The research space: using career paths to predict the evolution of the research output of individuals, institutions, and nations," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1695-1709, December.
    14. Juste Raimbault, 2019. "Exploration of an interdisciplinary scientific landscape," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 617-641, May.
    15. Hofmann, Peter & Keller, Robert & Urbach, Nils, 2019. "Inter-technology relationship networks: Arranging technologies through text mining," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 202-213.
    16. Andrea Bonaccorsi & Nicola Melluso & Francesco Alessandro Massucci, 2022. "Exploring the antecedents of interdisciplinarity at the European Research Council: a topic modeling approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 6961-6991, December.
    17. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    18. Giulio Giacomo Cantone, 2024. "How to measure interdisciplinary research? A systemic design for the model of measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4937-4982, August.
    19. R. Basurto-Flores & L. Guzmán-Vargas & S. Velasco & A. Medina & A. Calvo Hernandez, 2018. "On entropy research analysis: cross-disciplinary knowledge transfer," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 123-139, October.
    20. Karmen Stopar & Damjana Drobne & Klemen Eler & Tomaz Bartol, 2016. "Citation analysis and mapping of nanoscience and nanotechnology: identifying the scope and interdisciplinarity of research," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 563-581, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:5:y:2011:i:3:p:431-438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.