IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v116y2018i3d10.1007_s11192-018-2812-9.html
   My bibliography  Save this article

Disciplinary structures in Nature, Science and PNAS: journal and country levels

Author

Listed:
  • Jielan Ding

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Per Ahlgren

    (Chinese Academy of Sciences
    KTH Royal Institute of Technology)

  • Liying Yang

    (Chinese Academy of Sciences)

  • Ting Yue

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

This paper analyzes, using Web of Science publications and two time periods (2004–2006 and 2014–2016), the disciplinary structures in the three prestigious journals Nature, Science and PNAS, compared with two baselines: Non-NSP_Multi (multidisciplinary publications that have other source journals than Nature, Science and PNAS), and Non-Multi (publications assigned to other categories than Multidisciplinary). We analyze the profiles at two levels, journal and country. The results for the journal level show that for Nature and Science, the publications are considerably less concentrated to certain disciplines compared to PNAS. Biology is the dominant discipline for all the three journals. Nature and Science have similar publication shares in Medicine, Geosciences, Physics, Space science, and Chemistry. The publications of PNAS are highly concentrated to two disciplines: Biology and Medicine. Compared with Non-NSP_Multi and Non-Multi, the shares of Biology in NSP journals are higher, whereas the share of Medicine is lower. At the country level, 14 countries are included, among them the five BRICS countries. With respect to the NSP journals, the emphasis disciplines (in terms of world share of publications) of most countries other than USA are the disciplines in which USA has its weakest performance. The disciplinary structures of USA and of most of the other studied countries therefore tend to be different. Regarding Non-NSP_Multi and Non-Multi, the shapes of the disciplinary structures of the 14 countries can be roughly grouped into three groups, while there are more types of shapes for the countries in the NSP journals. For all five units of analysis, the discipline structures of most countries generally change only slightly between different time periods. The structures of some BRICS countries, however, change to a relatively large extent.

Suggested Citation

  • Jielan Ding & Per Ahlgren & Liying Yang & Ting Yue, 2018. "Disciplinary structures in Nature, Science and PNAS: journal and country levels," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1817-1852, September.
  • Handle: RePEc:spr:scient:v:116:y:2018:i:3:d:10.1007_s11192-018-2812-9
    DOI: 10.1007/s11192-018-2812-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2812-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2812-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ning Li, 2017. "Evolutionary patterns of national disciplinary profiles in research: 1996–2015," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 493-520, April.
    2. Slavo Radosevic & Esin Yoruk, 2014. "Are there global shifts in the world science base? Analysing the catching up and falling behind of world regions," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1897-1924, December.
    3. Peter Vinkler, 2018. "Structure of the scientific research and science policy," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 737-756, February.
    4. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    5. Ronald Rousseau & Jielan Ding, 2016. "Does international collaboration yield a higher citation potential for US scientists publishing in highly visible interdisciplinary Journals?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(4), pages 1009-1013, April.
    6. W. Glänzel & A. Schubert & U. Schoepflin & H. J. Czerwon, 1999. "An item-by-item subject classification of papers published in journals covered by the SSCI database using reference analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 46(3), pages 431-441, November.
    7. Bongioanni, Irene & Daraio, Cinzia & Ruocco, Giancarlo, 2014. "A quantitative measure to compare the disciplinary profiles of research systems and their evolution over time," Journal of Informetrics, Elsevier, vol. 8(3), pages 710-727.
    8. Ismael Rafols & Alan L. Porter & Loet Leydesdorff, 2010. "Science overlay maps: A new tool for research policy and library management," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(9), pages 1871-1887, September.
    9. Félix Moya-Anegón & Víctor Herrero-Solana, 2013. "Worldwide Topology of the Scientific Subject Profile: A Macro Approach in the Country Level," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    10. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    11. Harzing, Anne-Wil & Giroud, Axèle, 2014. "The competitive advantage of nations: An application to academia," Journal of Informetrics, Elsevier, vol. 8(1), pages 29-42.
    12. Esther García-Carpintero & Begoña Granadino & Luis M. Plaza, 2010. "The representation of nationalities on the editorial boards of international journals and the promotion of the scientific output of the same countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(3), pages 799-811, September.
    13. Xianwen Wang & Wenli Mao & Shenmeng Xu & Chunbo Zhang, 2014. "Usage history of scientific literature: Nature metrics and metrics of Nature publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1923-1933, March.
    14. Li Ying Yang & Ting Yue & Jie Lan Ding & Tao Han, 2012. "A comparison of disciplinary structure in science between the G7 and the BRIC countries by bibliometric methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 497-516, November.
    15. Ludo Waltman & Nees Jan van Eck, 2012. "A new methodology for constructing a publication‐level classification system of science," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    16. Kevin W. Boyack & Richard Klavans & Katy Börner, 2005. "Mapping the backbone of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(3), pages 351-374, August.
    17. Dag W. Aksnes & Thed N. Leeuwen & Gunnar Sivertsen, 2014. "The effect of booming countries on changes in the relative specialization index (RSI) on country level," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1391-1401, November.
    18. Loet Leydesdorff & Stephen Carley & Ismael Rafols, 2013. "Global maps of science based on the new Web-of-Science categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 589-593, February.
    19. Ping Zhou & Wolfgang Glänzel, 2010. "In-depth analysis on China’s international cooperation in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(3), pages 597-612, March.
    20. W. Glänzel & A. Schubert & H. -J. Czerwon, 1999. "An item-by-item subject classification of papers published in multidisciplinary and general journals using reference analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 44(3), pages 427-439, March.
    21. Wolfgang Glänzel & András Schubert, 2003. "A new classification scheme of science fields and subfields designed for scientometric evaluation purposes," Scientometrics, Springer;Akadémiai Kiadó, vol. 56(3), pages 357-367, March.
    22. David A. King, 2004. "The scientific impact of nations," Nature, Nature, vol. 430(6997), pages 311-316, July.
    23. Štěpán Jurajda & Stanislav Kozubek & Daniel Münich & Samuel Škoda, 2017. "Scientific publication performance in post-communist countries: still lagging far behind," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 315-328, July.
    24. Félix Moya-Anegón & Benjamín Vargas-Quesada & Victor Herrero-Solana & Zaida Chinchilla-Rodríguez & Elena Corera-Álvarez & Francisco J. Munoz-Fernández, 2004. "A new technique for building maps of large scientific domains based on the cocitation of classes and categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 61(1), pages 129-145, September.
    25. Loet Leydesdorff & Ismael Rafols, 2009. "A global map of science based on the ISI subject categories," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 348-362, February.
    26. Alan L. Porter & Ismael Rafols, 2009. "Is science becoming more interdisciplinary? Measuring and mapping six research fields over time," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 719-745, December.
    27. Alan L Porter & David J Roessner & Anne E Heberger, 2008. "How interdisciplinary is a given body of research?," Research Evaluation, Oxford University Press, vol. 17(4), pages 273-282, December.
    28. Waltman, Ludo & van Eck, Nees Jan & Noyons, Ed C.M., 2010. "A unified approach to mapping and clustering of bibliometric networks," Journal of Informetrics, Elsevier, vol. 4(4), pages 629-635.
    29. Feng Li & Yajun Miao & Jing Ding, 2015. "Tracking the development of disciplinary structure in China’s top research universities (1998–2013)," Research Evaluation, Oxford University Press, vol. 24(3), pages 312-324.
    30. J. Kozlowski & S. Radosevic & D. Ircha, 1999. "History matters: The inherited disciplinary structure of the post-communist science in countries of central and eastern Europe and its restructuring," Scientometrics, Springer;Akadémiai Kiadó, vol. 45(1), pages 137-166, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Staša Milojević, 2020. "Nature, Science, and PNAS: disciplinary profiles and impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(3), pages 1301-1315, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo Arencibia-Jorge & Rosa Lidia Vega-Almeida & José Luis Jiménez-Andrade & Humberto Carrillo-Calvet, 2022. "Evolutionary stages and multidisciplinary nature of artificial intelligence research," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5139-5158, September.
    2. Wang, Qi & Waltman, Ludo, 2016. "Large-scale analysis of the accuracy of the journal classification systems of Web of Science and Scopus," Journal of Informetrics, Elsevier, vol. 10(2), pages 347-364.
    3. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    4. Carusi, Chiara & Bianchi, Giuseppe, 2019. "Scientific community detection via bipartite scholar/journal graph co-clustering," Journal of Informetrics, Elsevier, vol. 13(1), pages 354-386.
    5. Abramo, Giovanni & D'Angelo, Ciriaco Andrea & Di Costa, Flavia, 2022. "Revealing the scientific comparative advantage of nations: Common and distinctive features," Journal of Informetrics, Elsevier, vol. 16(1).
    6. Yan, Erjia & Ding, Ying & Cronin, Blaise & Leydesdorff, Loet, 2013. "A bird's-eye view of scientific trading: Dependency relations among fields of science," Journal of Informetrics, Elsevier, vol. 7(2), pages 249-264.
    7. Andrea Bonaccorsi & Nicola Melluso & Francesco Alessandro Massucci, 2022. "Exploring the antecedents of interdisciplinarity at the European Research Council: a topic modeling approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 6961-6991, December.
    8. Chiara Carusi & Giuseppe Bianchi, 2020. "A look at interdisciplinarity using bipartite scholar/journal networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 867-894, February.
    9. Sjögårde, Peter & Ahlgren, Per, 2018. "Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics," Journal of Informetrics, Elsevier, vol. 12(1), pages 133-152.
    10. Seokbeom Kwon & Alan Porter & Jan Youtie, 2016. "Navigating the innovation trajectories of technology by combining specialization score analyses for publications and patents: graphene and nano-enabled drug delivery," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1057-1071, March.
    11. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.
    12. Lin Zhang & Beibei Sun & Fei Shu & Ying Huang, 2022. "Comparing paper level classifications across different methods and systems: an investigation of Nature publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7633-7651, December.
    13. Miguel R. Guevara & Dominik Hartmann & Manuel Aristarán & Marcelo Mendoza & César A. Hidalgo, 2016. "The research space: using career paths to predict the evolution of the research output of individuals, institutions, and nations," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1695-1709, December.
    14. Leydesdorff, Loet & Bornmann, Lutz & Zhou, Ping, 2016. "Construction of a pragmatic base line for journal classifications and maps based on aggregated journal-journal citation relations," Journal of Informetrics, Elsevier, vol. 10(4), pages 902-918.
    15. Sergey Shashnov & Maxim Kotsemir, 2018. "Research landscape of the BRICS countries: current trends in research output, thematic structures of publications, and the relative influence of partners," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 1115-1155, November.
    16. Juan Miguel Campanario, 2018. "Are leaders really leading? Journals that are first in Web of Science subject categories in the context of their groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 111-130, April.
    17. Nieminen, Paavo & Pölönen, Ilkka & Sipola, Tuomo, 2013. "Research literature clustering using diffusion maps," Journal of Informetrics, Elsevier, vol. 7(4), pages 874-886.
    18. Staša Milojević, 2020. "Nature, Science, and PNAS: disciplinary profiles and impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(3), pages 1301-1315, June.
    19. Lyu, Haihua & Bu, Yi & Zhao, Zhenyue & Zhang, Jiarong & Li, Jiang, 2022. "Citation bias in measuring knowledge flow: Evidence from the web of science at the discipline level," Journal of Informetrics, Elsevier, vol. 16(4).
    20. Loet Leydesdorff & Stephen Carley & Ismael Rafols, 2013. "Global maps of science based on the new Web-of-Science categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 589-593, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:116:y:2018:i:3:d:10.1007_s11192-018-2812-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.