IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v16y2022i1s1751157721001152.html
   My bibliography  Save this article

Revealing the scientific comparative advantage of nations: Common and distinctive features

Author

Listed:
  • Abramo, Giovanni
  • D'Angelo, Ciriaco Andrea
  • Di Costa, Flavia

Abstract

The paper compares the scientific profiles of 199 countries relative to 254 subject categories, based on the impact of knowledge produced in each category, measured by the bibliometric indicator known as Total Fractional Impact (TFI). TFI is calculated on the basis of publications indexed in Web of Science (here over years 2010-2019). The approach taken overcomes some criticalities occurring with indicators previously proposed for the same purpose. With this approach, it is possible to: i) produce, for any country, a scientific specialization profile in correspondence with each subject category; ii) identify distinctive or common characteristics of individual countries or clusters of countries. The approach provides a new tool which may reveal useful for formulation of research policies.

Suggested Citation

  • Abramo, Giovanni & D'Angelo, Ciriaco Andrea & Di Costa, Flavia, 2022. "Revealing the scientific comparative advantage of nations: Common and distinctive features," Journal of Informetrics, Elsevier, vol. 16(1).
  • Handle: RePEc:eee:infome:v:16:y:2022:i:1:s1751157721001152
    DOI: 10.1016/j.joi.2021.101244
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157721001152
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2021.101244?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ning Li, 2017. "Evolutionary patterns of national disciplinary profiles in research: 1996–2015," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 493-520, April.
    2. Aldo Geuna, 2003. "The Evolution of Specialization: Public Research in the Chemical and Pharmaceutical Industries," Chapters, in: Pier Paolo Saviotti (ed.), Applied Evolutionary Economics, chapter 4, Edward Elgar Publishing.
    3. Slavo Radosevic & Esin Yoruk, 2014. "Are there global shifts in the world science base? Analysing the catching up and falling behind of world regions," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1897-1924, December.
    4. Almeida, J.A.S. & Pais, A.A.C.C. & Formosinho, S.J., 2009. "Science indicators and science patterns in Europe," Journal of Informetrics, Elsevier, vol. 3(2), pages 134-142.
    5. Giovanni Abramo & Ciriaco Andrea D’Angelo & Flavia Costa, 2017. "Do interdisciplinary research teams deliver higher gains to science?," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 317-336, April.
    6. Brusoni, Stefano & Geuna, Aldo, 2003. "An international comparison of sectoral knowledge bases: persistence and integration in the pharmaceutical industry," Research Policy, Elsevier, vol. 32(10), pages 1897-1912, December.
    7. Sergey Shashnov & Maxim Kotsemir, 2018. "Research landscape of the BRICS countries: current trends in research output, thematic structures of publications, and the relative influence of partners," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 1115-1155, November.
    8. Bongioanni, Irene & Daraio, Cinzia & Ruocco, Giancarlo, 2014. "A quantitative measure to compare the disciplinary profiles of research systems and their evolution over time," Journal of Informetrics, Elsevier, vol. 8(3), pages 710-727.
    9. Stig Slipersæter & Jean Thèves & Barend van der Meulen, 2007. "Comparing the evolution of national research policies: What patterns of change?," Science and Public Policy, Oxford University Press, vol. 34(6), pages 372-388, July.
    10. Cimini, Giulio & Zaccaria, Andrea & Gabrielli, Andrea, 2016. "Investigating the interplay between fundamentals of national research systems: Performance, investments and international collaborations," Journal of Informetrics, Elsevier, vol. 10(1), pages 200-211.
    11. Ronald Rousseau, 2019. "Balassa = revealed competitive advantage = activity," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1835-1836, December.
    12. Chen, Shiji & Arsenault, Clément & Larivière, Vincent, 2015. "Are top-cited papers more interdisciplinary?," Journal of Informetrics, Elsevier, vol. 9(4), pages 1034-1046.
    13. Rainer Frietsch & Aris Kaloudis, 2007. "Monitoring sector specialisation of public and private funded business research and development," Science and Public Policy, Oxford University Press, vol. 34(6), pages 431-443, July.
    14. Harzing, Anne-Wil & Giroud, Axèle, 2014. "The competitive advantage of nations: An application to academia," Journal of Informetrics, Elsevier, vol. 8(1), pages 29-42.
    15. Yuzhuo Cai & Roger Normann & Rómulo Pinheiro & Markku Sotarauta, 2018. "Economic specialization and diversification at the country and regional level: introducing a conceptual framework to study innovation policy logics," European Planning Studies, Taylor & Francis Journals, vol. 26(12), pages 2407-2426, December.
    16. Patrick Herron & Aashish Mehta & Cong Cao & Timothy Lenoir, 2016. "Research diversification and impact: the case of national nanoscience development," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 629-659, November.
    17. Pablo Jack & Jeremias Lachman & Andrés López, 2021. "Scientific knowledge production and economic catching-up: an empirical analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4565-4587, June.
    18. Xiaojun Hu & Ronald Rousseau, 2009. "A comparative study of the difference in research performance in biomedical fields among selected Western and Asian countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(2), pages 475-491, November.
    19. Wolfgang Glänzel & Balázs Schlemmer, 2007. "National research profiles in a changing Europe (1983–2003) An exploratory study of sectoral characteristics in the Triple Helix," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(2), pages 267-275, February.
    20. Li Ying Yang & Ting Yue & Jie Lan Ding & Tao Han, 2012. "A comparison of disciplinary structure in science between the G7 and the BRIC countries by bibliometric methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 497-516, November.
    21. Rousseau, Ronald & Yang, Liying, 2012. "Reflections on the activity index and related indicators," Journal of Informetrics, Elsevier, vol. 6(3), pages 413-421.
    22. Cesar A. Hidalgo & Ricardo Hausmann, 2009. "The Building Blocks of Economic Complexity," Papers 0909.3890, arXiv.org.
    23. Leydesdorff, Loet & Wagner, Caroline, 2009. "Macro-level indicators of the relations between research funding and research output," Journal of Informetrics, Elsevier, vol. 3(4), pages 353-362.
    24. Giovanni Abramo & Ciriaco Andrea D’Angelo & Flavia Di Costa, 2014. "A new bibliometric approach to assess the scientific specialization of regions," Research Evaluation, Oxford University Press, vol. 23(2), pages 183-194.
    25. Dag W. Aksnes & Thed N. Leeuwen & Gunnar Sivertsen, 2014. "The effect of booming countries on changes in the relative specialization index (RSI) on country level," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1391-1401, November.
    26. Patelli, Aurelio & Cimini, Giulio & Pugliese, Emanuele & Gabrielli, Andrea, 2017. "The scientific influence of nations on global scientific and technological development," Journal of Informetrics, Elsevier, vol. 11(4), pages 1229-1237.
    27. Sandström, Ulf & Van den Besselaar, Peter, 2018. "Funding, evaluation, and the performance of national research systems," Journal of Informetrics, Elsevier, vol. 12(1), pages 365-384.
    28. Jiancheng Guan & Nan Ma, 2004. "A comparative study of research performance in computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 61(3), pages 339-359, November.
    29. David A. King, 2004. "The scientific impact of nations," Nature, Nature, vol. 430(6997), pages 311-316, July.
    30. Tânia Pinto & Aurora A. C. Teixeira, 2020. "The impact of research output on economic growth by fields of science: a dynamic panel data analysis, 1980–2016," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 945-978, May.
    31. Dag. W. Aksnes & Gunnar Sivertsen & Thed N. van Leeuwen & Kaja K. Wendt, 2017. "Measuring the productivity of national R&D systems: Challenges in cross-national comparisons of R&D input and publication output indicators," Science and Public Policy, Oxford University Press, vol. 44(2), pages 246-258.
    32. Waltman, Ludo & van Eck, Nees Jan, 2015. "Field-normalized citation impact indicators and the choice of an appropriate counting method," Journal of Informetrics, Elsevier, vol. 9(4), pages 872-894.
    33. Aksnes, Dag W. & Schneider, Jesper W. & Gunnarsson, Magnus, 2012. "Ranking national research systems by citation indicators. A comparative analysis using whole and fractionalised counting methods," Journal of Informetrics, Elsevier, vol. 6(1), pages 36-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Hou & Jiashan Luo & Xue Pan, 2022. "Research Topic Specialization of Universities in Information Science and Library Science and Its Impact on Inter-University Collaboration," Sustainability, MDPI, vol. 14(15), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jielan Ding & Per Ahlgren & Liying Yang & Ting Yue, 2018. "Disciplinary structures in Nature, Science and PNAS: journal and country levels," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1817-1852, September.
    2. Ning Li, 2017. "Evolutionary patterns of national disciplinary profiles in research: 1996–2015," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 493-520, April.
    3. Alexander Sokolov & Sergey Shashnov & Maxim Kotsemir, 2021. "From BRICS to BRICS plus: selecting promising areas of S&T Cooperation with developing countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 8815-8859, November.
    4. Cinzia Daraio & Francesco Fabbri & Giulia Gavazzi & Maria Grazia Izzo & Luca Leuzzi & Giammarco Quaglia & Giancarlo Ruocco, 2018. "Assessing the interdependencies between scientific disciplinary profiles," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1785-1803, September.
    5. Sergey Shashnov & Maxim Kotsemir, 2018. "Research landscape of the BRICS countries: current trends in research output, thematic structures of publications, and the relative influence of partners," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 1115-1155, November.
    6. Cimini, Giulio & Zaccaria, Andrea & Gabrielli, Andrea, 2016. "Investigating the interplay between fundamentals of national research systems: Performance, investments and international collaborations," Journal of Informetrics, Elsevier, vol. 10(1), pages 200-211.
    7. Martin Grančay & Tomáš Dudáš & Ladislav Mura, 2022. "Revealed comparative advantages in academic publishing of “old” and “new” European Union Member States 1998–2018," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1247-1271, March.
    8. Joel Emanuel Fuchs & Thomas Heinze, 2022. "Two-dimensional mapping of university profiles in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7215-7228, December.
    9. Patelli, Aurelio & Napolitano, Lorenzo & Cimini, Giulio & Gabrielli, Andrea, 2023. "Geography of science: Competitiveness and inequality," Journal of Informetrics, Elsevier, vol. 17(1).
    10. Tanel Hirv, 2022. "The interplay of the size of the research system, ways of collaboration, level, and method of funding in determining bibliometric outputs," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1295-1316, March.
    11. Elmira Janavi & Mohammad Javad Mansourzadeh & Mojgan Samandar Ali Eshtehardi, 2020. "A methodology for developing scientific diversification strategy of countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2229-2264, December.
    12. Alonso Rodríguez-Navarro & Ricardo Brito, 2022. "The link between countries’ economic and scientific wealth has a complex dependence on technological activity and research policy," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2871-2896, May.
    13. Nestor Gandelman & Osiris J. Parcero & Matilde Pereira & Flavia Roldán, 2021. "Ventajas comparativas reveladas en disciplinas científicas y tecnológicas en Uruguay," Documentos de Investigación 125, Universidad ORT Uruguay. Facultad de Administración y Ciencias Sociales.
    14. Barbara S. Lancho-Barrantes & Hector G. Ceballos-Cancino & Francisco J. Cantu-Ortiz, 2021. "Comparing the efficiency of countries to assimilate and apply research investment," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(4), pages 1347-1369, August.
    15. Li Ying Yang & Ting Yue & Jie Lan Ding & Tao Han, 2012. "A comparison of disciplinary structure in science between the G7 and the BRIC countries by bibliometric methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 497-516, November.
    16. Harzing, Anne-Wil & Giroud, Axèle, 2014. "The competitive advantage of nations: An application to academia," Journal of Informetrics, Elsevier, vol. 8(1), pages 29-42.
    17. Patrick Herron & Aashish Mehta & Cong Cao & Timothy Lenoir, 2016. "Research diversification and impact: the case of national nanoscience development," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 629-659, November.
    18. Maxim Kotsemir & Tatiana Kuznetsova & Elena Nasybulina & Anna Pikalova, 2015. "Identifying Directions for Russia’s Science and Technology Cooperation," Foresight-Russia Форсайт, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 9(4 (eng)), pages 54-72.
    19. Dag W. Aksnes & Thed N. Leeuwen & Gunnar Sivertsen, 2014. "The effect of booming countries on changes in the relative specialization index (RSI) on country level," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1391-1401, November.
    20. Yi Zhang & Mingting Kou & Kaihua Chen & Jiancheng Guan & Yuchen Li, 2016. "Modelling the Basic Research Competitiveness Index (BR-CI) with an application to the biomass energy field," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1221-1241, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:16:y:2022:i:1:s1751157721001152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.