IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v6y2012i2p237-253.html
   My bibliography  Save this article

Adding community and dynamic to topic models

Author

Listed:
  • Li, Daifeng
  • Ding, Ying
  • Shuai, Xin
  • Bollen, Johan
  • Tang, Jie
  • Chen, Shanshan
  • Zhu, Jiayi
  • Rocha, Guilherme

Abstract

The detection of communities in large social networks is receiving increasing attention in a variety of research areas. Most existing community detection approaches focus on the topology of social connections (e.g., coauthor, citation, and social conversation) without considering their topic and dynamic features. In this paper, we propose two models to detect communities by considering both topic and dynamic features. First, the Community Topic Model (CTM) can identify communities sharing similar topics. Second, the Dynamic CTM (DCTM) can capture the dynamic features of communities and topics based on the Bernoulli distribution that leverages the temporal continuity between consecutive timestamps. Both models were tested on two datasets: ArnetMiner and Twitter. Experiments show that communities with similar topics can be detected and the co-evolution of communities and topics can be observed by these two models, which allow us to better understand the dynamic features of social networks and make improved personalized recommendations.

Suggested Citation

  • Li, Daifeng & Ding, Ying & Shuai, Xin & Bollen, Johan & Tang, Jie & Chen, Shanshan & Zhu, Jiayi & Rocha, Guilherme, 2012. "Adding community and dynamic to topic models," Journal of Informetrics, Elsevier, vol. 6(2), pages 237-253.
  • Handle: RePEc:eee:infome:v:6:y:2012:i:2:p:237-253
    DOI: 10.1016/j.joi.2011.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157711001039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2011.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    2. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    2. Schröder, Nadine & Falke, Andreas & Hruschka, Harald & Reutterer, Thomas, 2019. "Analyzing the Browsing Basket: A Latent Interests-Based Segmentation Tool," Journal of Interactive Marketing, Elsevier, vol. 47(C), pages 181-197.
    3. Erjia Yan, 2014. "Topic-based Pagerank: toward a topic-level scientific evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(2), pages 407-437, August.
    4. Peng Wang & Mengnan Zhang & Yike Wang & Xiqing Yuan, 2023. "Sustainable Career Development of Chinese Generation Z (Post-00s) Attending and Graduating from University: Dynamic Topic Model Analysis Based on Microblogging," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    5. Small, Kenneth A. & Ng, Chen Feng, 2014. "Optimizing road capacity and type," Economics of Transportation, Elsevier, vol. 3(2), pages 145-157.
    6. Masood, Muhammad Ali & Abbasi, Rabeeh Ayaz, 2021. "Using graph embedding and machine learning to identify rebels on twitter," Journal of Informetrics, Elsevier, vol. 15(1).
    7. Qiang Gao & Xiao Huang & Ke Dong & Zhentao Liang & Jiang Wu, 2022. "Semantic-enhanced topic evolution analysis: a combination of the dynamic topic model and word2vec," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1543-1563, March.
    8. Qian-Jin Zong & Hong-Zhou Shen & Qin-Jian Yuan & Xiao-Wei Hu & Zhi-Ping Hou & Shun-Guo Deng, 2013. "Doctoral dissertations of Library and Information Science in China: A co-word analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 781-799, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanto Chandra, 2018. "Mapping the evolution of entrepreneurship as a field of research (1990–2013): A scientometric analysis," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-24, January.
    2. Wang, Dan & Zhou, Xiao & Zhao, Pengwei & Pang, Juan & Ren, Qiaoyang, 2025. "Early identification of breakthrough technologies: Insights from science-driven innovations," Journal of Informetrics, Elsevier, vol. 19(1).
    3. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    4. Baggio, Rodolfo, 2020. "Tourism destinations: A universality conjecture based on network science," Annals of Tourism Research, Elsevier, vol. 82(C).
    5. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    6. Martin Rosvall & Carl T Bergstrom, 2011. "Multilevel Compression of Random Walks on Networks Reveals Hierarchical Organization in Large Integrated Systems," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-10, April.
    7. Yao Hongxing & Lu Yunxia, 2017. "Analyzing the Potential Influence of Shanghai Stock Market Based on Link Prediction Method," Journal of Systems Science and Information, De Gruyter, vol. 5(5), pages 446-461, October.
    8. Gergely Tibély & David Sousa-Rodrigues & Péter Pollner & Gergely Palla, 2016. "Comparing the Hierarchy of Keywords in On-Line News Portals," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    9. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    10. Yang, Jinqing & Hu, Jiming, 2025. "Scientific knowledge role transition prediction from a knowledge hierarchical structure perspective," Journal of Informetrics, Elsevier, vol. 19(1).
    11. Xiaoguang Wang & Qikai Cheng & Wei Lu, 2014. "Analyzing evolution of research topics with NEViewer: a new method based on dynamic co-word networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1253-1271, November.
    12. Xiaoling Sun & Hongfei Lin & Kan Xu & Kun Ding, 2015. "How we collaborate: characterizing, modeling and predicting scientific collaborations," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 43-60, July.
    13. Gräbner, Claudius, 2016. "From realism to instrumentalism - and back? Methodological implications of changes in the epistemology of economics," MPRA Paper 71933, University Library of Munich, Germany.
    14. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    15. Liu, Shuxin & Ji, Xinsheng & Liu, Caixia & Bai, Yi, 2017. "Extended resource allocation index for link prediction of complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 174-183.
    16. Junhuan Zhang & Peter McBurney & Katarzyna Musial, 2018. "Convergence of trading strategies in continuous double auction markets with boundedly-rational networked traders," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 301-352, January.
    17. Miralles, Alicia & Comellas, Francesc & Chen, Lichao & Zhang, Zhongzhi, 2010. "Planar unclustered scale-free graphs as models for technological and biological networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1955-1964.
    18. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    19. Li, Huichun & Zhang, Xue & Zhao, Chengli, 2021. "Explaining social events through community evolution on temporal networks," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    20. Hakyeon Lee & Pilsung Kang, 2018. "Identifying core topics in technology and innovation management studies: a topic model approach," The Journal of Technology Transfer, Springer, vol. 43(5), pages 1291-1317, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:6:y:2012:i:2:p:237-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.