IDEAS home Printed from https://ideas.repec.org/a/eee/ijoais/v25y2017icp1-17.html
   My bibliography  Save this article

Detecting corporate tax evasion using a hybrid intelligent system: A case study of Iran

Author

Listed:
  • Rahimikia, Eghbal
  • Mohammadi, Shapour
  • Rahmani, Teymur
  • Ghazanfari, Mehdi

Abstract

This paper concentrates on the effectiveness of using a hybrid intelligent system that combines multilayer perceptron (MLP) neural network, support vector machine (SVM), and logistic regression (LR) classification models with harmony search (HS) optimization algorithm to detect corporate tax evasion for the Iranian National Tax Administration (INTA). In this research, the role of optimization algorithm is to search and find the optimal classification model parameters and financial variables combination. Our proposed system finds optimal structure of the classification model based on the characteristics of the imported dataset. This system has been tested on the data from the food and textile sectors using an iterative structure of 10-fold cross-validation involving 2451 and 2053 test set samples from the tax returns of a two-year period and 1118 and 906 samples as out-of-sample using the tax returns of the consequent year. The results from out-of-sample data show that MLP neural network in combination with HS optimization algorithm outperforms other combinations with 90.07% and 82.45% accuracy, 85.48% and 84.85% sensitivity, and 90.34% and 82.26% specificity, respectively in the food and textile sectors. In addition, there is also a difference between the selected models and obtained accuracies based on the test data and out-of-sample data in both sectors and selected financial variables of every sector.

Suggested Citation

  • Rahimikia, Eghbal & Mohammadi, Shapour & Rahmani, Teymur & Ghazanfari, Mehdi, 2017. "Detecting corporate tax evasion using a hybrid intelligent system: A case study of Iran," International Journal of Accounting Information Systems, Elsevier, vol. 25(C), pages 1-17.
  • Handle: RePEc:eee:ijoais:v:25:y:2017:i:c:p:1-17
    DOI: 10.1016/j.accinf.2016.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1467089515300464
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.accinf.2016.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianfei Shen & Lincong Han, 2020. "RETRACTED ARTICLE: Design process optimization and profit calculation module development simulation analysis of financial accounting information system based on particle swarm optimization (PSO)," Information Systems and e-Business Management, Springer, vol. 18(4), pages 809-822, December.
    2. Fábio Albuquerque & Paula Gomes Dos Santos, 2023. "Recent Trends in Accounting and Information System Research: A Literature Review Using Textual Analysis Tools," FinTech, MDPI, vol. 2(2), pages 1-27, April.
    3. Habib Saragih, Arfah & Ali, Syaiful & Suwardi, Eko & Utomo, Hargo, 2024. "Finding the missing pieces to an optimal corporate tax savings: Information technology governance and internal information quality," International Journal of Accounting Information Systems, Elsevier, vol. 52(C).
    4. Li, Jing & Li, Nan & Xia, Tongshui & Guo, Jinjin, 2023. "Textual analysis and detection of financial fraud: Evidence from Chinese manufacturing firms," Economic Modelling, Elsevier, vol. 126(C).
    5. Codruţa Mare & Daniela Manaţe & Gabriela-Mihaela Mureşan & Simona Laura Dragoş & Cristian Mihai Dragoş & Alexandra-Anca Purcel, 2022. "Machine Learning Models for Predicting Romanian Farmers’ Purchase of Crop Insurance," Mathematics, MDPI, vol. 10(19), pages 1-13, October.
    6. Ioana – Florina Coita & Laura – Camelia Filip & Eliza-Angelika Kicska, 2021. "Tax Evasion And Financial Fraud In The Current Digital Context," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 187-194, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    2. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    3. Li, Hui & Sun, Jie, 2009. "Hybridizing principles of the Electre method with case-based reasoning for data mining: Electre-CBR-I and Electre-CBR-II," European Journal of Operational Research, Elsevier, vol. 197(1), pages 214-224, August.
    4. Carlos Serrano-Cinca & Yolanda Fuertes-Call鮠 & Bego uti鲲ez-Nieto & Beatriz Cuellar-Fernᮤez, 2014. "Path modelling to bankruptcy: causes and symptoms of the banking crisis," Applied Economics, Taylor & Francis Journals, vol. 46(31), pages 3798-3811, November.
    5. Noora Alzayed & Rasol Eskandari & Hassan Yazdifar, 2023. "Bank failure prediction: corporate governance and financial indicators," Review of Quantitative Finance and Accounting, Springer, vol. 61(2), pages 601-631, August.
    6. David Veganzones, 2022. "Corporate failure prediction using threshold‐based models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 956-979, August.
    7. I. L. Beilin* & V. V. Khomenko & N. M. Yakupova & E. I. Kadochnikova & D. D. Aleeva, 2018. "Managing the Production Program of a Small Innovative Chemical Enterprise in the Face of Changing Demand," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 175-180:5.
    8. Doumpos, Michalis & Andriosopoulos, Kostas & Galariotis, Emilios & Makridou, Georgia & Zopounidis, Constantin, 2017. "Corporate failure prediction in the European energy sector: A multicriteria approach and the effect of country characteristics," European Journal of Operational Research, Elsevier, vol. 262(1), pages 347-360.
    9. Amin Jan & Maran Marimuthu & Muhammad Kashif Shad & Haseeb ur-Rehman & Muhammad Zahid & Ahmad Ali Jan, 2019. "Bankruptcy profile of the Islamic and conventional banks in Malaysia: a post-crisis period analysis," Economic Change and Restructuring, Springer, vol. 52(1), pages 67-87, February.
    10. repec:zbw:bofrdp:2009_035 is not listed on IDEAS
    11. Yoshino, Naoyuki & Taghizadeh-Hesary, Farhad, 2017. "Solutions for SMEs’ difficulties in accessing finance: Asian experiences," ADBI Working Papers 768, Asian Development Bank Institute.
    12. Demyanyk, Yuliya & Hasan, Iftekhar, 2009. "Financial crises and bank failures: a review of prediction methods," Bank of Finland Research Discussion Papers 35/2009, Bank of Finland.
    13. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    14. Mare, Davide Salvatore & Moreira, Fernando & Rossi, Roberto, 2017. "Nonstationary Z-Score measures," European Journal of Operational Research, Elsevier, vol. 260(1), pages 348-358.
    15. Elena Gregova & Katarina Valaskova & Peter Adamko & Milos Tumpach & Jaroslav Jaros, 2020. "Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    16. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    17. Salehi Mahdi & Rostami Neda, 2013. "Bankruptcy Prediction By Using Support Vector Machines And Genetic Algorithms," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 8(1), pages 104-114, April.
    18. María Escribano-Navas & German Gemar, 2021. "Gender and Bankruptcy: A Hotel Survival Econometric Analysis," Sustainability, MDPI, vol. 13(12), pages 1-13, June.
    19. Alessandra Amendola & Marialuisa Restaino & Luca Sensini, 2010. "Variabile Selection in Forecasting Models for Corporate Bankruptcy," Working Papers 3_216, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    20. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    21. Tamara Ayœs, Armando Lenin & Villegas, Gladis Cecilia & Leones Castro, María Cristina & Salazar Bocanegra, Juan Antonio, 2018. "Modelaci—n del riesgo de insolvencia en empresas del sector salud empleando modelos logit || Modeling of Insolvency Risk in Health Sector Companies Using Logit Models," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 128-145, Diciembre.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijoais:v:25:y:2017:i:c:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-accounting-information-systems/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.