IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v78y2025ics1544612325005069.html
   My bibliography  Save this article

A novel method for analyzing financial market efficiency through fuzzy set theory

Author

Listed:
  • Askari, Abolfazl
  • Hajizadeh, Ehsan

Abstract

This paper introduces the Fuzzy Market Inefficiency Measure (FMIM), a novel approach for evaluating financial market efficiency by leveraging fuzzy set theory. FMIM addresses limitations in traditional metrics by modeling inefficiency as a triangular fuzzy number, capturing the inherent uncertainties and non-linear dynamics of financial markets. The methodology incorporates fuzzy regression with triangular membership functions and employs a straightforward optimization framework for parameter estimation. Empirical analysis across diverse asset classes—including equities, commodities, and cryptocurrencies—demonstrates FMIM's robustness, particularly during periods of heightened market uncertainty, such as the 2008 financial crisis and the 2020 COVID-19 pandemic. FMIM not only detects pronounced inefficiencies during turbulence but also provides nuanced insights into subtle variations under stable conditions. By introducing a flexible and adaptive framework, FMIM offers researchers, analysts, and policymakers a powerful tool for advancing the understanding of inefficiency dynamics in complex financial environments.

Suggested Citation

  • Askari, Abolfazl & Hajizadeh, Ehsan, 2025. "A novel method for analyzing financial market efficiency through fuzzy set theory," Finance Research Letters, Elsevier, vol. 78(C).
  • Handle: RePEc:eee:finlet:v:78:y:2025:i:c:s1544612325005069
    DOI: 10.1016/j.frl.2025.107243
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612325005069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2025.107243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Puertas, Antonio M. & Clara-Rahola, Joaquim & Sánchez-Granero, Miguel A. & de las Nieves, F. Javier & Trinidad-Segovia, Juan E., 2023. "A new look at financial markets efficiency from linear response theory," Finance Research Letters, Elsevier, vol. 51(C).
    2. Askari, Abolfazl & Hajizadeh, Ehsan, 2024. "Exploring market efficiency levels: A powerful approach based on a gamma distribution," Finance Research Letters, Elsevier, vol. 66(C).
    3. Alvarez-Ramirez, Jose & Rodriguez, Eduardo & Alvarez, Jesus, 2012. "A multiscale entropy approach for market efficiency," International Review of Financial Analysis, Elsevier, vol. 21(C), pages 64-69.
    4. Wang, Jingjing & Wang, Xiaoyang, 2021. "COVID-19 and financial market efficiency: Evidence from an entropy-based analysis," Finance Research Letters, Elsevier, vol. 42(C).
    5. Ammy-Driss, Ayoub & Garcin, Matthieu, 2023. "Efficiency of the financial markets during the COVID-19 crisis: Time-varying parameters of fractional stable dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Urquhart, Andrew & McGroarty, Frank, 2014. "Calendar effects, market conditions and the Adaptive Market Hypothesis: Evidence from long-run U.S. data," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 154-166.
    7. Noda, Akihiko, 2016. "A test of the adaptive market hypothesis using a time-varying AR model in Japan," Finance Research Letters, Elsevier, vol. 17(C), pages 66-71.
    8. Mikio Ito & Akihiko Noda & Tatsuma Wada, 2014. "International stock market efficiency: a non-Bayesian time-varying model approach," Applied Economics, Taylor & Francis Journals, vol. 46(23), pages 2744-2754, August.
    9. Tran, Vu Le & Leirvik, Thomas, 2019. "A simple but powerful measure of market efficiency," Finance Research Letters, Elsevier, vol. 29(C), pages 141-151.
    10. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Yoon, Seong-Min, 2018. "Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets," Finance Research Letters, Elsevier, vol. 27(C), pages 228-234.
    11. Urquhart, Andrew & Hudson, Robert, 2013. "Efficient or adaptive markets? Evidence from major stock markets using very long run historic data," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 130-142.
    12. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    13. Kian‐Ping Lim & Robert Brooks, 2011. "The Evolution Of Stock Market Efficiency Over Time: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 69-108, February.
    14. Mikio Ito & Akihiko Noda & Tatsuma Wada, 2016. "The evolution of stock market efficiency in the US: a non-Bayesian time-varying model approach," Applied Economics, Taylor & Francis Journals, vol. 48(7), pages 621-635, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Askari, Abolfazl & Hajizadeh, Ehsan, 2024. "Exploring market efficiency levels: A powerful approach based on a gamma distribution," Finance Research Letters, Elsevier, vol. 66(C).
    2. Pınar Evrim Mandacı & F. Dilvin Taskın & Zeliha Can Ergun, 2019. "Adaptive Market Hypothesis," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 84-101.
    3. Tran, Vu Le & Leirvik, Thomas, 2019. "A simple but powerful measure of market efficiency," Finance Research Letters, Elsevier, vol. 29(C), pages 141-151.
    4. Tran, Vu Le & Leirvik, Thomas, 2020. "Efficiency in the markets of crypto-currencies," Finance Research Letters, Elsevier, vol. 35(C).
    5. Urquhart, Andrew & McGroarty, Frank, 2016. "Are stock markets really efficient? Evidence of the adaptive market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 39-49.
    6. Dzung Phan Tran Trung & Hung Pham Quang, 2019. "Adaptive Market Hypothesis: Evidence from the Vietnamese Stock Market," JRFM, MDPI, vol. 12(2), pages 1-16, May.
    7. Rahman, Md. Lutfur & Lee, Doowon & Shamsuddin, Abul, 2017. "Time-varying return predictability in South Asian equity markets," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 179-200.
    8. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    9. Akihiko Noda, 2021. "On the evolution of cryptocurrency market efficiency," Applied Economics Letters, Taylor & Francis Journals, vol. 28(6), pages 433-439, March.
    10. Charfeddine, Lanouar & Khediri, Karim Ben & Aye, Goodness C. & Gupta, Rangan, 2018. "Time-varying efficiency of developed and emerging bond markets: Evidence from long-spans of historical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 632-647.
    11. Deniz Erer & Elif Erer & Selim Güngör, 2023. "The aggregate and sectoral time-varying market efficiency during crisis periods in Turkey: a comparative analysis with COVID-19 outbreak and the global financial crisis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    12. Khaled Mokni & Ghassen El Montasser & Ahdi Noomen Ajmi & Elie Bouri, 2024. "On the efficiency and its drivers in the cryptocurrency market: the case of Bitcoin and Ethereum," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-25, December.
    13. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    14. Aslam, Faheem & Memon, Bilal Ahmed & Hunjra, Ahmed Imran & Bouri, Elie, 2023. "The dynamics of market efficiency of major cryptocurrencies," Global Finance Journal, Elsevier, vol. 58(C).
    15. Mohamed Malek Belhoula & Walid Mensi & Kamel Naoui, 2024. "Impacts of investor's sentiment, uncertainty indexes, and macroeconomic factors on the dynamic efficiency of G7 stock markets," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(3), pages 2855-2886, June.
    16. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    17. Jiang, Jinjin & Li, Haiqi, 2020. "A new measure for market efficiency and its application," Finance Research Letters, Elsevier, vol. 34(C).
    18. Kenichi Hirayama & Akihiko Noda, 2019. "Measuring the Time-Varying Market Efficiency in the Prewar and Wartime Japanese Stock Market, 1924-1943," Papers 1911.04059, arXiv.org, revised May 2024.
    19. Xiong, Xiong & Meng, Yongqiang & Li, Xiao & Shen, Dehua, 2019. "An empirical analysis of the Adaptive Market Hypothesis with calendar effects:Evidence from China," Finance Research Letters, Elsevier, vol. 31(C).
    20. Siddique, Maryam, 2023. "Does the Adaptive Market Hypothesis Exist in Equity Market? Evidence from Pakistan Stock Exchange," OSF Preprints 9b5dx, Center for Open Science.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:78:y:2025:i:c:s1544612325005069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.