On the speculative nature of cryptocurrencies: A study on Garman and Klass volatility measure
Author
Abstract
Suggested Citation
DOI: 10.1016/j.frl.2018.12.023
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gkillas, Konstantinos & Katsiampa, Paraskevi, 2018. "An application of extreme value theory to cryptocurrencies," Economics Letters, Elsevier, vol. 164(C), pages 109-111.
- Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
- Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017.
"Some stylized facts of the Bitcoin market,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
- Aurelio F. Bariviera & Mar'ia Jos'e Basgall & Waldo Hasperu'e & Marcelo Naiouf, 2017. "Some stylized facts of the Bitcoin market," Papers 1708.04532, arXiv.org.
- Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
- Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017.
"Can volume predict Bitcoin returns and volatility? A quantiles-based approach,"
Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
- Mehmet Balcilar & Elie Bouri & Rangan Gupta & David Roubaud, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Post-Print hal-02008551, HAL.
- Choi, M.S. & Park, J.A. & Hwang, S.Y., 2012. "Asymmetric GARCH processes featuring both threshold effect and bilinear structure," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 419-426.
- Li, Hongquan & Hong, Yongmiao, 2011. "Financial volatility forecasting with range-based autoregressive volatility model," Finance Research Letters, Elsevier, vol. 8(2), pages 69-76, June.
- Lahmiri, Salim & Bekiros, Stelios & Salvi, Antonio, 2018. "Long-range memory, distributional variation and randomness of bitcoin volatility," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 43-48.
- Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
- Baur, Dirk G. & Dimpfl, Thomas & Kuck, Konstantin, 2018. "Bitcoin, gold and the US dollar – A replication and extension," Finance Research Letters, Elsevier, vol. 25(C), pages 103-110.
- Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
- Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
- Giuseppe Storti & Cosimo Vitale, 2003. "BL-GARCH models and asymmetries in volatility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(1), pages 19-39, February.
- C. Baek & M. Elbeck, 2015. "Bitcoins as an investment or speculative vehicle? A first look," Applied Economics Letters, Taylor & Francis Journals, vol. 22(1), pages 30-34, January.
- Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-582, June.
- Phillip, Andrew & Chan, Jennifer S.K. & Peiris, Shelton, 2018. "A new look at Cryptocurrencies," Economics Letters, Elsevier, vol. 163(C), pages 6-9.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- He, Xie & Hamori, Shigeyuki, 2024.
"The higher the better? Hedging and investment strategies in cryptocurrency markets: Insights from higher moment spillovers,"
International Review of Financial Analysis, Elsevier, vol. 95(PA).
- Xie He & Shigeyuki Hamori, 2023. "The Higher the Better? Hedging and Investment Strategies in Cryptocurrency Markets : Insights from Higher Moment Spillovers," Discussion Papers 2315, Graduate School of Economics, Kobe University.
- Zhao, Mingguo & Park, Hail, 2024. "Quantile time-frequency spillovers among green bonds, cryptocurrencies, and conventional financial markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
- Alexandre Aidov & Olesya Lobanova, 2021. "Volatility and Depth in Commodity and FX Futures Markets," JRFM, MDPI, vol. 14(11), pages 1-16, November.
- Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021.
"Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis,"
Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
- Aurelio F. Bariviera & Ignasi Merediz-Sol`a, 2020. "Where do we stand in cryptocurrencies economic research? A survey based on hybrid analysis," Papers 2003.09723, arXiv.org.
- Cheng, Jiyang & Tiwari, Sunil & Khaled, Djebbouri & Mahendru, Mandeep & Shahzad, Umer, 2024. "Forecasting Bitcoin prices using artificial intelligence: Combination of ML, SARIMA, and Facebook Prophet models," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
- Riccardo De Blasis, 2023. "Weighted-indexed semi-Markov model: calibration and application to financial modeling," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-16, December.
- Ahmed, Walid M.A., 2021. "Stock market reactions to upside and downside volatility of Bitcoin: A quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
- Alexander Guzmán & Christian Pinto-Gutiérrez & María-Andrea Trujillo, 2021. "Trading Cryptocurrencies as a Pandemic Pastime: COVID-19 Lockdowns and Bitcoin Volume," Mathematics, MDPI, vol. 9(15), pages 1-15, July.
- Ahmed, Mohamed Shaker & El-Masry, Ahmed A. & Al-Maghyereh, Aktham I. & Kumar, Satish, 2024. "Cryptocurrency volatility: A review, synthesis, and research agenda," Research in International Business and Finance, Elsevier, vol. 71(C).
- Assaf, Ata & Mokni, Khaled & Yousaf, Imran & Bhandari, Avishek, 2023. "Long memory in the high frequency cryptocurrency markets using fractal connectivity analysis: The impact of COVID-19," Research in International Business and Finance, Elsevier, vol. 64(C).
- Lo, Yuen & Medda, Francesca, 2020. "Uniswap and the rise of the decentralized exchange," MPRA Paper 103925, University Library of Munich, Germany.
- Jinxin Cui & Aktham Maghyereh, 2022. "Time–frequency co-movement and risk connectedness among cryptocurrencies: new evidence from the higher-order moments before and during the COVID-19 pandemic," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-56, December.
- Filip Hampl & Lucie Gyönyörová, 2021. "Can Fiat‐backed Stablecoins Be Considered Cash or Cash Equivalents Under International Financial Reporting Standards Rules?," Australian Accounting Review, CPA Australia, vol. 31(3), pages 233-255, September.
- James, Nick & Menzies, Max & Chan, Jennifer, 2021.
"Changes to the extreme and erratic behaviour of cryptocurrencies during COVID-19,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
- Nick James & Max Menzies & Jennifer Chan, 2019. "Changes to the extreme and erratic behaviour of cryptocurrencies during COVID-19," Papers 1912.06193, arXiv.org, revised Nov 2020.
- Christophe Schinckus & Canh Phuc Nguyen & Felicia Hui Ling Chong, 2023. "Between financial and algorithmic dynamics of cryptocurrencies: An exploratory study," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 3055-3070, July.
- Adrian Millea, 2021. "Deep Reinforcement Learning for Trading—A Critical Survey," Data, MDPI, vol. 6(11), pages 1-25, November.
- Khoo, Zhi De & Ng, Kok Haur & Koh, You Beng & Ng, Kooi Huat, 2024. "Forecasting volatility of stock indices: Improved GARCH-type models through combined weighted volatility measure and weighted volatility indicators," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
- Wang, Yang & Xiuping, Sui & Zhang, Qi, 2021. "Can fintech improve the efficiency of commercial banks? —An analysis based on big data," Research in International Business and Finance, Elsevier, vol. 55(C).
- Qihang Xue & Caiquan Bai & Weiwei Xiao, 2022. "Fintech and corporate green technology innovation: Impacts and mechanisms," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(8), pages 3898-3914, December.
- Huynh, Nhan & Phan, Hoa, 2023. "Emotions in the crypto market: Do photos really speak?," Finance Research Letters, Elsevier, vol. 55(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
- Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021.
"Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis,"
Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
- Aurelio F. Bariviera & Ignasi Merediz-Sol`a, 2020. "Where do we stand in cryptocurrencies economic research? A survey based on hybrid analysis," Papers 2003.09723, arXiv.org.
- Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
- Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
- Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
- Narayan, Paresh Kumar & Narayan, Seema & Eki Rahman, R. & Setiawan, Iwan, 2019. "Bitcoin price growth and Indonesia's monetary system," Emerging Markets Review, Elsevier, vol. 38(C), pages 364-376.
- Parthajit Kayal & G. Balasubramanian, 2021. "Excess Volatility in Bitcoin: Extreme Value Volatility Estimation," IIM Kozhikode Society & Management Review, , vol. 10(2), pages 222-231, July.
- Walther, Thomas & Klein, Tony & Bouri, Elie, 2019.
"Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
- Walther, Thomas & Klein, Tony & Bouri, Elie, 2018. "Exogenous Drivers of Bitcoin and Cryptocurrency Volatility – A Mixed Data Sampling Approach to Forecasting," QBS Working Paper Series 2018/02, Queen's University Belfast, Queen's Business School.
- Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.
- Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2019. "A Peek into the Unobservable: Hidden States and Bayesian Inference for the Bitcoin and Ether Price Series," Papers 1909.10957, arXiv.org, revised Jul 2021.
- Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
- Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019.
"The effects of markets, uncertainty and search intensity on bitcoin returns,"
International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
- Theodore Panagiotidis & Thanasis Stengos & Orestis Vravosinos, 2018. "The effects of markets, uncertainty and search intensity on bitcoin returns," Working Paper series 18-39, Rimini Centre for Economic Analysis.
- Chaim, Pedro & Laurini, Márcio P., 2019. "Nonlinear dependence in cryptocurrency markets," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 32-47.
- López-Martín, Carmen & Arguedas-Sanz, Raquel & Muela, Sonia Benito, 2022. "A cryptocurrency empirical study focused on evaluating their distribution functions," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 387-407.
- Omane-Adjepong, Maurice & Alagidede, Imhotep Paul, 2019. "Multiresolution analysis and spillovers of major cryptocurrency markets," Research in International Business and Finance, Elsevier, vol. 49(C), pages 191-206.
- Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.
- Wei Zhang & Pengfei Wang & Xiao Li & Dehua Shen, 2018. "Some stylized facts of the cryptocurrency market," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5950-5965, November.
- Mawuli Segnon & Stelios Bekiros, 2020. "Forecasting volatility in bitcoin market," Annals of Finance, Springer, vol. 16(3), pages 435-462, September.
- Fakhfekh, Mohamed & Jeribi, Ahmed, 2020. "Volatility dynamics of crypto-currencies’ returns: Evidence from asymmetric and long memory GARCH models," Research in International Business and Finance, Elsevier, vol. 51(C).
- repec:eme:jalpps:jal-02-2023-0023 is not listed on IDEAS
- Kosc, Krzysztof & Sakowski, Paweł & Ślepaczuk, Robert, 2019.
"Momentum and contrarian effects on the cryptocurrency market,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 691-701.
- Krzysztof Kość & Paweł Sakowski & Robert Ślepaczuk, 2018. "Momentum and contrarian effects on the cryptocurrency market," Working Papers 2018-09, Faculty of Economic Sciences, University of Warsaw.
More about this item
Keywords
Volatility; GK measure; Cryptocurrencies; CARR model;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
- C5 - Mathematical and Quantitative Methods - - Econometric Modeling
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:32:y:2020:i:c:s1544612318305105. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.