IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i3p419-426.html
   My bibliography  Save this article

Asymmetric GARCH processes featuring both threshold effect and bilinear structure

Author

Listed:
  • Choi, M.S.
  • Park, J.A.
  • Hwang, S.Y.

Abstract

A class of asymmetric GARCH models is proposed by combining threshold effect and bilinear structure. The class is referred to as threshold-bilinear GARCH processes. A simulation study demonstrates that the class exhibits diverse asymmetries in volatilities, accommodating existing asymmetric models. Stationarity and existence of moments are discussed. Applications to Korean stock prices are illustrated.

Suggested Citation

  • Choi, M.S. & Park, J.A. & Hwang, S.Y., 2012. "Asymmetric GARCH processes featuring both threshold effect and bilinear structure," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 419-426.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:3:p:419-426
    DOI: 10.1016/j.spl.2011.11.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211003774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2011.11.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Jiazhu & Wang, Hui & Tong, Howell, 2008. "Estimation and tests for power-transformed and threshold GARCH models," Journal of Econometrics, Elsevier, vol. 142(1), pages 352-378, January.
    2. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    3. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Hwang, S. Y. & Basawa, I. V., 2004. "Stationarity and moment structure for Box-Cox transformed threshold GARCH(1,1) processes," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 209-220, July.
    6. Giuseppe Storti & Cosimo Vitale, 2003. "BL-GARCH models and asymmetries in volatility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(1), pages 19-39, February.
    7. Liu, Ji-Chun, 2006. "On The Tail Behaviors Of A Family Of Garch Processes," Econometric Theory, Cambridge University Press, vol. 22(5), pages 852-862, October.
    8. Abdou Kâ Diongue & Dominique Guegan & Rodney C. Wolff, 2010. "BL-GARCH model with elliptical distributed innovations," Post-Print halshs-00368340, HAL.
    9. He, Changli & Terasvirta, Timo, 1999. "Properties of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 92(1), pages 173-192, September.
    10. Ling, Shiqing & McAleer, Michael, 2002. "Stationarity and the existence of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 109-117, January.
    11. Enrique Sentana, 1995. "Quadratic ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(4), pages 639-661.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suha Alawi, 2019. "The Effect of Direct Foreign Investment on Stock Price Volatility in the Saudi Market," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 9(8), pages 875-887, August.
    2. Kim, Jong-Min & Jung, Hojin, 2017. "Can asymmetric conditional volatility imply asymmetric tail dependence?," Economic Modelling, Elsevier, vol. 64(C), pages 409-418.
    3. Tan, Shay-Kee & Chan, Jennifer So-Kuen & Ng, Kok-Haur, 2020. "On the speculative nature of cryptocurrencies: A study on Garman and Klass volatility measure," Finance Research Letters, Elsevier, vol. 32(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    2. Changli He & Annastiina Silvennoinen & Timo Teräsvirta, 2008. "Parameterizing Unconditional Skewness in Models for Financial Time Series," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 208-230, Spring.
    3. Carnero M. Angeles & Pérez Ana, 2021. "Outliers and misleading leverage effect in asymmetric GARCH-type models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(1), pages 1-19, February.
    4. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    5. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    6. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024.
    7. Carol Alexander & Emese Lazar & Silvia Stanescu, 2010. "Analytic Moments for GARCH Processes," ICMA Centre Discussion Papers in Finance icma-dp2011-07, Henley Business School, University of Reading, revised Apr 2011.
    8. Lundbergh, Stefan & Terasvirta, Timo, 2002. "Evaluating GARCH models," Journal of Econometrics, Elsevier, vol. 110(2), pages 417-435, October.
    9. Li, Ming-Yuan Leon, 2008. "Clarifying the dynamics of the relationship between option and stock markets using the threshold vector error correction model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 511-520.
    10. Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Alexander, Carol & Lazar, Emese & Stanescu, Silvia, 2021. "Analytic moments for GJR-GARCH (1, 1) processes," International Journal of Forecasting, Elsevier, vol. 37(1), pages 105-124.
    12. María José Rodríguez & Esther Ruiz, 2012. "Revisiting Several Popular GARCH Models with Leverage Effect: Differences and Similarities," Journal of Financial Econometrics, Oxford University Press, vol. 10(4), pages 637-668, September.
    13. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    14. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    15. Verhoeven, Peter & McAleer, Michael, 2004. "Fat tails and asymmetry in financial volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(3), pages 351-361.
    16. Geon Choe & Kyungsub Lee, 2014. "Conditional correlation in asset return and GARCH intensity model," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(3), pages 197-224, July.
    17. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    18. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    19. Carl Lönnbark, 2016. "Asymmetry with respect to the memory in stock market volatilities," Empirical Economics, Springer, vol. 50(4), pages 1409-1419, June.
    20. Malmsten, Hans & Teräsvirta, Timo, 2004. "Stylized Facts of Financial Time Series and Three Popular Models of Volatility," SSE/EFI Working Paper Series in Economics and Finance 563, Stockholm School of Economics, revised 03 Sep 2004.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:3:p:419-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.