Data vs. information: Using clustering techniques to enhance stock returns forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.irfa.2023.102657
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017.
"Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500,"
European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2016. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," FAU Discussion Papers in Economics 03/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Christopher Krauss & Xuan Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01515120, HAL.
- Basalto, N. & Bellotti, R. & De Carlo, F. & Facchi, P. & Pascazio, S., 2005. "Clustering stock market companies via chaotic map synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 196-206.
- Shima Amini & Robert Hudson & Andrew Urquhart & Jian Wang, 2021. "Nonlinearity everywhere: implications for empirical finance, technical analysis and value at risk," The European Journal of Finance, Taylor & Francis Journals, vol. 27(13), pages 1326-1349, September.
- Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
- Mariya Gubareva & Maria Rosa Borges, 2022. "Governed by the cycle: interest rate sensitivity of emerging market corporate debt," Annals of Operations Research, Springer, vol. 313(2), pages 991-1019, June.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Batten, Jonathan A. & Lucey, Brian M. & McGroarty, Frank & Peat, Maurice & Urquhart, Andrew, 2018. "Does intraday technical trading have predictive power in precious metal markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 102-113.
- Goodwin, Paul & Lawton, Richard, 1999. "On the asymmetry of the symmetric MAPE," International Journal of Forecasting, Elsevier, vol. 15(4), pages 405-408, October.
- Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
- Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- Bartosz Bieganowski & Robert Ślepaczuk, 2024.
"Supervised Autoencoder MLP for Financial Time Series Forecasting,"
Working Papers
2024-03, Faculty of Economic Sciences, University of Warsaw.
- Bartosz Bieganowski & Robert Slepaczuk, 2024. "Supervised Autoencoder MLP for Financial Time Series Forecasting," Papers 2404.01866, arXiv.org, revised Jun 2024.
- Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020.
"Forex exchange rate forecasting using deep recurrent neural networks,"
Digital Finance, Springer, vol. 2(1), pages 69-96, September.
- Dautel, Alexander J. & Härdle, Wolfgang Karl & Lessmann, Stefan & Seow, Hsin-Vonn, 2019. "Forex Exchange Rate Forecasting Using Deep Recurrent Neural Networks," IRTG 1792 Discussion Papers 2019-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Dautel, Alexander Jakob & Härdle, Wolfgang Karl & Lessmann, Stefan & Seow, Hsin-Vonn, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," IRTG 1792 Discussion Papers 2020-006, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Fabian Waldow & Matthias Schnaubelt & Christopher Krauss & Thomas Günter Fischer, 2021. "Machine Learning in Futures Markets," JRFM, MDPI, vol. 14(3), pages 1-14, March.
- Axelsson, Birger & Song, Han-Suck, 2023. "Univariate Forecasting for REITs with Deep Learning: A Comparative Analysis with an ARIMA Model," Working Paper Series 23/10, Royal Institute of Technology, Department of Real Estate and Construction Management & Banking and Finance, revised 14 Nov 2023.
- Shangkun Deng & Zhihao Su & Yanmei Ren & Haoran Yu & Yingke Zhu & Chenyang Wei, 2022. "Can Japanese Candlestick Patterns be Profitable on the Component Stocks of the SSE50 Index?," SAGE Open, , vol. 12(3), pages 21582440221, August.
- Keer Yang & Guanqun Zhang & Chuan Bi & Qiang Guan & Hailu Xu & Shuai Xu, 2023. "Improving CNN-base Stock Trading By Considering Data Heterogeneity and Burst," Papers 2303.09407, arXiv.org.
- Sabyasachi Mohapatra & Rohan Mukherjee & Arindam Roy & Anirban Sengupta & Amit Puniyani, 2022. "Can Ensemble Machine Learning Methods Predict Stock Returns for Indian Banks Using Technical Indicators?," JRFM, MDPI, vol. 15(8), pages 1-16, August.
- Jinho Lee & Sungwoo Park & Jungyu Ahn & Jonghun Kwak, 2022. "ETF Portfolio Construction via Neural Network trained on Financial Statement Data," Papers 2207.01187, arXiv.org.
- Gourav Kumar & Uday Pratap Singh & Sanjeev Jain, 2022. "Swarm Intelligence Based Hybrid Neural Network Approach for Stock Price Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 991-1039, October.
- Schnaubelt, Matthias & Fischer, Thomas G. & Krauss, Christopher, 2020. "Separating the signal from the noise – Financial machine learning for Twitter," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
- Jinho Lee & Raehyun Kim & Yookyung Koh & Jaewoo Kang, 2019. "Global Stock Market Prediction Based on Stock Chart Images Using Deep Q-Network," Papers 1902.10948, arXiv.org.
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
- Thomas Günter Fischer & Christopher Krauss & Alexander Deinert, 2019. "Statistical Arbitrage in Cryptocurrency Markets," JRFM, MDPI, vol. 12(1), pages 1-15, February.
- Baoqiang Zhan & Shu Zhang & Helen S. Du & Xiaoguang Yang, 2022. "Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 861-882, October.
- Fischer, Thomas & Krauss, Christopher, 2017. "Deep learning with long short-term memory networks for financial market predictions," FAU Discussion Papers in Economics 11/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
- Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
- Lohrmann, Christoph & Luukka, Pasi, 2019. "Classification of intraday S&P500 returns with a Random Forest," International Journal of Forecasting, Elsevier, vol. 35(1), pages 390-407.
More about this item
Keywords
Stock price forecast; Clustering; Financial Reports; Deep learning; Investment algorithms; Trading;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:88:y:2023:i:c:s1057521923001734. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.